75 pages of source code and discussion
« Simulates tank monitoring system
* Actually works: runs under DOS and uC/OS
— Hardware-independent part is reasonably realistic
— Scaffold code replaces hardware-dependent code
— Simple user interface
+ Invitation: look through it to get better feel for RTOS application code
— Ask yourself: would I have organized it in the same way?

Supplemental material

‘We never got a chance to design the tank monitoring system discussed at length in this
book. It was brought to us at Probitas, the consulting firm where I work, already
specified, designed, coded, and (supposedly) tested. The client brought it to us for some
minor hardware and software enhancements.

‘We made the hardw fixing a few mi: p along the
‘way, without too much difficulty. Then we delved into the software. It was written with
a polling loop and some interrupt routines; it did not use an RTOS. To get any kind of
response, the software that calculated the levels in the tanks periodically saved its
intermediate results and returned to the polling loop to check if the user had pressed any
buttons. The software was written in interpreted BASIC. It was spaghetti.

I leave it to your imagination to visualize the difficulties that we encountered trying to
add features to this software without breaking it and without spoiling its response.

This was a number of years ago now, and it would stretch the truth to say that I wrote
this book in reaction to what I saw in that system. It gives me great satisfaction, however,
to hope that this book will prevent at least a few similar horrors in the future.

David E. Simon

&

» We’ve seen and discussed some challenges of developing reliable code:
— Can’t get error free code by testing
— Better to start with careful design (425 labs likely illustrate this)
— Much harder for complex systems, with changing requirements

+ Let’s look at some real-world issues pertaining to software development

— Significantly more effort required to produce large software fast
— For projects that produced over 75,000 SLOC in 12 months:
« Effort 1.17x to 4.19x above average of all projects
» Conclusions:
— If you want it fast, you’ll pay much more

— Team of 3-10 people can produce < 75,000 SLOC in a year
 High end more feasible if software has relatively low level of complexity
+ Shooting for high end likely to result in delays, reduced reliability
— Practical upper limit: 180,000 SLOC per year with 70-100 people
+ Cost: 2x to 4x more than same work done by fewer people over more time
— Software is complex, and managing development is tricky

BYu

— The longest most are willing to wait: ~12 months
* How much software can a typical IT shop create in 12 months?
— Clearly scales with number of programmers, right?

» Not quite so simple:
— Study of 281 SW development projects completed in 2000-2001
— Only 10% of projects built more than 75,000 SLOC in one year
* SLOC = Source Lines of Code
— Typical team size producing < 75,000 SLOC: 5-10 people
— Typical team size producing > 75,000 SLOC: 20-100 people

WALLY, HAVE YOU 1
MADE ANY PROGRESS | fe]
| (CODING YOUR MODULE?,

IN FACT, JUST A
MINUTE AGO I COULD
FEEL THE INSPIRATION
WELLING UP INSIOE ME.

THERE GOES THE ONE
PERSON LUHO HAS LESS
OF A REAL JOB THAN
100,

1

+ One approach used to generate better software
* Characteristics:
— Two programmers work side-by-side at one computer, continuously
collaborating on design, coding, and testing
— “Drivers” take turns; observers actively and continuously review
« Strategic thinking: Where will this approach lead? Is there a better way?
— Team is “like a coherent, intelligent organism working with one mind,
responsible for every aspect of this artifact”
— Participants equal: Not “a problem in your code” — it’s all our code

BYu;

Ona i ly bad egolessly laughed because his
reviewer found 17 bugs in 13 statemems Aﬁer fixing those defects, however, the
code performed flawlessly during testing and in production. How different this
outcome might have been had the programmer been too proud to accept the input of
others or had viewed this input as an indication of his madequacles Having another
[person] review desngn and coding i and i isan

 aspect of pair ing. “The human eye has an almost infinite
capacity for not seeing what it does not want to see... Programmers, if left to their
own devices, will ignore the most glaring errors in their output — errors that anyone
else can see in an instant.”

Williams and Kessler

when pair programmmg
« Data suggests that two together are more than twice as fast
— Also, pair suggests > 2x possible solutions than two independent individuals

* One careful experiment with 15 expert programmers:
— Assigned challenging problem for 45 minutes
— 5 worked individually, 10 in pairs; conditions + materials were the same
— All teams outperformed individuals, enjoyed it more, and had higher
confidence in their solution

— Outcome surprised and even particip

BYu

BYu;

— Helps keep both coders on task: neither feels they can slack off
— Continual exchange of ideas makes programmers better
— Pair can solve problems together that they can’t solve alone
— Observer often spots defects; less animosity than formal code review
— Programmers in shared space often overhear something that matters
* “Programmers need contact with other programmers™
— Productivity and enjoyment both increase
Challenges:
— Getting everyone to buy in: programmers are used to working alone
— Fine balance between too much and too little ego

BYu

— Workspace layout critical: “slide the keyboard, don’t move the chairs™

— Take a break periodically

* Pair programming is intense and mentally exhausting

* Go check email, make phone calls
— It is acceptable to work alone 10% to 50% of time

« Experimental prototyping, thinking through hard problems
— Avoid

« competition

* blaming individuals for errors

Having adopted this approach, they were delivering finished and tested code faster than
ever ... The code that came out the back of the two-programmer terminals was nearly
100% bug free... It was better code, tighter and more efficient, having benefited from the
thinking of two bright minds and the steady dialogue between two trusted terminal
mates... Two in tandem is not redund: it’s a direct route to greater
efficiency and better quality.

Larry Constantine

Describing visit to Whitesmiths, Ltd., a software company

1 strongly feel pair programming is the primary reason our team has been successful. It
has given us a very high level of code quality (almost to the point of zero defects). The
only code we have ever had errors in was code that wasn’t pair programmed.

(Anonymous respondent to survey)

Most inventors and engineers I've met are like me — they're shy and they live in their

heads. They're almost like artists. In fact, the very best of them are artists. And artists
‘work best alone where they can control an invention's design without a lot of other
people designing it for marketing or some other committee. I don't believe anything
really revolutionary has been invented by committee. If you're that rare engineer who's
an inventor and also an artist, I’'m going to give you some advice that might be hard to
take. That advice is: Work alone. You're going to be best able to design revolutionary
products and features if you're working on your own. Not on a committee. Not on a team.
Stephen Wozniak

» How would you describe your experiences?

Class 334 Embedded Systems Conforence
Boston, September 2001

Twenty-Five Most Common Mistakes with Real-Time Software Development
David B. Stewart

Executive VP and Chief Technology Offcer

Embedded Research Solulons, LLC.

Columbia, MD 21046

Email: dstowart@embedded-zone.com
Web: hitplwww.embedded-zone.com

Absract:

The.

highigh

e technology and recent research resuls are discussed. applcaton. 1 muliple misiakes e common and they are il
Txed, addit

management methodologies, 0 poor decisons on Iowlevel 't tnousands ot millionsof ollar. Thie | hcourage.

technical ssues relaing o the design and inplementaion. g reyiew your curent methods nd poiccs, compare them o

ence in reviewing the software designs and implementrions
iy embedied

pos and decide for yoursell if poenial svings xis for your

ntroduction prcices

ssumes users can specify exactly what they want up front

— Problem 1: users don’t know, are inconsistent, change their minds . Cust':me?s il el

— Problem 2: p dr ically und i required effort - ;;n;ﬁ;;x :m.d cates Caliedsiorenin) lone
* Iterative model: — pick either desired stories for next iteration or date

— Development cycle shortened to accommodate design changes of nextrelease

— Entire system not specified in advance: done in chunks * Programmers
N i — estimate cost of implc?m«?uﬁng eacl'i story

g — separate selected stories into iterations and smaller-
— Includes simultaneous analysis, design, coding and testing on small pieces grained tasks e
hroughout entire develop cycle — individually accept responsibility for each task

B ST el |

At outset, team creates a set of test cases that will demonstrate that the Tests are written before code is written
task is complete « Tests are added to (large) permanent test set
» Programmers pick a single test case, write code to pass it, and run test — Is rerun automatically to verify every subsequent code change
— Iftest is passed, they go on to next test case — If your change breaks something, you know right away
— Iftest is failed, they figure out why and do the cleanest redesign possible Each story created must be festable and estimatable
* Technique at heart of XP: unit testing + Programmers create unit tests; customers create functional tests for the
stories in each iteration
— Customer: “I’ll know it works when it can do X”

* At every moment, the design:
— runs all tests,
— contains no duplicate code, and
— has fewest possible classes and methods
* Design evolves through changes, keeping all tests running
* New code is integrated after no more than a few hours
— At each point, system rebuilt from scratch: if any test fails, changes are discarded
+ For large projects, customer representative is on site full-time
* 40-hour weeks: no one can work two consecutive weeks of overtime

. Evione follows the rules, but team can aiee to chﬁe rules

‘When we started with XP, some of the developers did not want to follow it. They felt
that it would hurt their development style and that they would not be as productive.
‘What happened was that their pieces of the application were producing the most
problem reports. Since they were not programming in pairs, two people had not
designed the subsystem, and their skills were falling behind the other developers who
were learning from each other. Two well-trained developers working together and with
the rest of the team will always outperform one “intelligent” developer working alone.

A misconception about XP is that it stifles your creativity and individual growth. It’s
actually quite the contrary. XP stimulates growth and ivity and team
members to take chances. The key is to decide the direction of the corporation and stand
behind the hard decisions.

list ize-fits all techni

— Itisnotap

— Probably most appropriate for small- to medium-sized systems where
requirements are vague, likely to change.

E
— Author once “watched helplessly while a high ceremony heavyweight process
brought an organization of talented, formerly productive software engineers to a dead
stop. Crimes were committed in the name of SEI CMM and ISO 9001.”

— On the other hand, he also had the “privilege to observe an organization achieve
CMM maturity Level 4 certification without the baggage of a productivity-killing,
paperwork-clogged high ceremony methodology.”

— “What’s needed is not a single software methodology, but a rich toolkit” of options,
from which developers pick the best matches for a given project.

Agile is a time-boxed iterative approach to software delivery that
builds software incrementally from the start of the project, instead of
trying to deliver it all at once near the end.

* The three most popular flavors of Agile are "

- XP
_ Scrum ’ AGILE v
— Kanban ‘

+ Differences between the three approaches: &

— Teams organization, reqt and p ‘who picks features for
next iteration, iteration length, allowing chauges during an iteration, using pair

_

BYU;

‘We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

— Individuals and interactions over processes and tools

— Working software over comprehensive documentation
— Customer collaboration over contract negotiation
— Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.

<signed by 17 individuals>

through trial and error

16. Generalizations based on a single architecture

15. Optimizing at the wrong time

14. Reusing code not designed for reuse

13. Using blocking forms of message passing

12. No memory analysis

11. Improper use of global variables

10. Indiscriminate use of interrupts

I ‘

No special tools or expensive resources needed, but can reduce debugging time by 10x
— Not widely used by embedded developers
— “The most important tool you can use to get your code out faster with fewer bugs™
— Goal: identify and remove bugs before testing
Measured effectiveness:
— IBM removes 82% of all defects before testing begins
— One study: each defect identified saved 9 hours (!) downstream
— AT&T claimed 14% increase in productivity, 10x increase in quality
— HP: testing likely to miss 80% of errors found in inspection

24. Delays implemented as empty loops

23. Tools choice driven by marketing hype, not by evaluation of
technical needs

22. Large if-then-else and case statements

21. Documentation was written after implementation

20. Interactive and incomplete test programs

19. Software engineers not participating in hardware design
18. No emulators of target application

“It’s just a glitch”

The first right answer is the only answer

No code reviews

Nobody else here can help me

One big loop

Too many inter-module and circular dependencies

No naming and style conventions

& > » B o Sled

No measurements of execution time

BYu

— Moderator: schedules room, paces meeting, follows up on rework
— Reader: paraphrases code operation for team — never the author!
— Recorder: notes errors on standard form, others can focus on code
— Author: understand errors that are found, illuminate unclear areas
— Optional: Trainee — to help new staff get up to speed

+ Inspections
— only note problems; returned to Author for solutions
— are limited to two hours max

— are scheduled only after clean compile (no errors or warnings)

BYu;

+ Developer is responsible “to ¢

— Author submits code to Moederator who forms inspection team

— Listings, documents, requirements distributed to team members

* Overview

— Optional step: Author provides background to team members not familiar
with project

* Preparation

— Insp individually

code and materials

— They mark up their copies of code, noting suspected problem areas

— Author makes all suggested corrections, gets clean compile and resubmits to
Moderator

* Follow-up

— Moderator checks reworked code

— If Moderator is satisfied, inspection is formally complete and code may then
be tested

— Assessment of Vitruvius and his book by historians:
* “He writes in atrocious Latin, but he knows his business.”
* “He has all the marks of one unused to composition, to whom writing is a painful task.”

— Ganssle: “Even two millenia ago engineers wrote badly, yet were recognized as experts
in their field. Perhaps even then these Romans were geeks.”

+ Comments reflect care while coding; tends to diminish over project lifetime

— Ganssle’s personal favorites from many code reviews:

/* Is this right? */

unicate clearly and grammatically with
¢ 0

— Reader translates code snippets (2-3 lines) into English
— Every decision point and branch is considered

— Errors classified as major (customer-visible) or minor (spelling,
non-compliance with standard, poor workmanship)

— Both code and comments are considered

Misspellings, lousy grammar, and poor communication of ideas are as deadly in comments
as outright bugs in code. Firmware must do two things to be acceptable: it must work, and
it must communicate its meaning to a future version of yourself — and to others. The
comments are a critical part of this and deserve as much attention as the code itself.

— Code size is compared with original estimate (to improve estimation process)

BYu;

what code exists
» Improved code quality

&

— Small software firm located in Bath, England: ~100 employees

— Premise of founders: software isn’t as hard as people make it out to be
+ Firm uses formal methods — matt ically based

— Error rate reduced to 1 in 10,000 lines of code (~1/60 normal rate)

— Market focus: highly reliable mission-critical code

— Approach not perfect, and not for everybody

— Expensive and slow: Praxis charges up to 50% more than standard rates
« Confidence in their work:

— Typical contract: Praxis commits to fix any bug found in 1*' year fiee

- one case, only four bugs turned up — in 100,000 lines of code!
A ren hey ea were f1xed just a few hours

involved with product (not just IT people)
— Designers try to imagine all possible scenarios
— Sometimes a prototype is built — just to verify system requirements
— System then described in excruciating detail: pages of specifications, in English
— Then spec written in formal specification language: “Z” (zed)

* Purpose: visually or i detect iguities and i

* These would turn into bugs in software implementation
— Coding begins only after specification is proven correct and complete
— Language used was designed by Praxis: Spark, based on Ada
* Ambiguous expressions, functions, notations eliminated: outcome predictable
 Bug rate in Spark claimed to be 10 to 100 times lower than other languages

BYu English > Z > Spark

BYu;

+ Situation and background:

Location: secret Serpukhov-15 early-warning facility near Moscow
Center responsibility: validate warnings of US launch to Soviet high command

dq

Li Colonel Petrov is in
Just after midnight, 26 September 1983
Siren howls, computers indicate launch of an ICBM in the US

200 computer operators stop work, leap from their seats, look to Petrov

High political tensions between Soviets and US

US openly planning pean depl of long: Pershing 11 ballistic
missiles and ground-launched cruise missiles
US depl ‘was a to Soviet depl. of intermediate range SS-20

— US and NATO were organizing a military exercise later that fall focusing on the use
of tactical nuclear weapons in Europe

— Soviet leaders feared exercise was a cover for an actual invasion
* The technology:

— The Soviets had long had ground-based radars on their borders

— Would give the leaders ~15 minutes warning in case of nuclear attack

— Soviets had just added space-based early warning system to extend warning to ~30
minutes

— Nine Oko satellites in highly elliptical orbits took turns scanning skies above US
missile fields

BYXU|

I ‘

different clouds started reflecting light): “probability of attack, 100%”
— This clearly wasn’t the all-out attack they were expecting — but what was happening?
— Petrov was scared and hands shaking, but he yelled at the others to get back to work
— He notified his superiors that it was a false alarm — later called this a 50-50 guess

— 15 unbearable minutes later, it was clear that he had made the right call

— Military leaders were terribly embarrassed by what he had done, showing them up

— Old Russian rule: subordinate must never be cleverer than the boss

— They cited him for failing to fill out the operations log that night

— He left the army a few months later to take job as research engineer

— Within one year, Soviets started using separate satellites in geostationary orbit to give

Alarm given by Cosmos 1382, just reaching the high point of its orbit, directly above
northern Europe

From its perspective, US was on horizon

Line from satellite to Malmstrom AFB in Montana extended directly into setting sun
Apparently scattered high-altitude clouds above Malmstrom reflected sunlight into
infrared sensors aboard Cosmos 1382

This was mistaken for bright light given off by hot gases in missile plume

Normally infrared light reflects diffusely, but near the equinox co-linear sun can cause
specular reflections; clouds act as mirrors

Designers had tried to avoid this by choosing grazing viewing angle to increase
efl

Lieutenant Colonel Stanislav Petrov,
died on May 19, 2017. For the last
several years of his life, he resided in
the outskirts of Moscow, living on a
small military pension. His story
stayed secret until 1998.

op eams Il be in Hall of Fame.
— Special recognition: Huxley Award

— Find something you enjoy and dive in
— Thursday, Dec. 19, 8:30-10:30am, 490 CB

« Final is comprehensive, 50 multiple choice questions

— To prepare: reread text, midterm solutions, slides, papers, labs, HW
« Deadline for all labs: tomorrow night (Thursday, Dec 12)

— Unless you talk with me first about an extension

— If so inclined, start companies; turn the world upside down
— You are capable of far more than you realize!

+ Thanks for a great semester. You are the best part of my job!

* Please double-check all scores posted on Learning Suite

