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Chapter 9: Development tools 

•  Development tools for embedded systems must address some interesting 
and unique challenges 

•  Let’s explore by considering a “native tool chain” –  tools that run on 
the host and prepare a program to run on the host 

•  We’ll then explore the differences of embedded tools that run on the 
host and prepare a program for a different target 
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ABBOTT.C 
int idunno; 
… 
whosonfirst(idunno); 
… 
 

Linker: resolves addresses of 
different object files in 
terms of offsets from base 
address of program 

Loader (for systems without 
virtual memory): loads 
program, modifies absolute 
addresses in executable based 
on actual starting location in 
physical memory 

Compiler: translates C source 
files to machine instructions, 
produces object files 

Native tool chain 

compiler compiler 

linker 

loader 

HAHAHA.EXE 
… 
MOVE R1,2388 
CALL 1547 
… 
… 
… 
MOVE R1, R5 
… 
(value of idunno) 
… 

1547 

2388 

HAHAHA.EXE 
… 
MOVE R1,22388 
CALL 21547 
… 
… 
… 
MOVE R1, R5 
… 
(value of idunno) 
… 

memory 

21547 

22388 

COSTELLO.C 
… 
int whosonfirst(int x) 
{ 
    … 
} 

ABBOTT.OBJ 
… 
MOVE R1,(idunno) 
CALL whosonfirst 
… 

COSTELLO.OBJ 
… 
… 
whosonfirst: 
… 
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Linker 

•  Determines addresses of labels that assembler could not resolve 
–  Obvious: extern functions and variables 
–  Less obvious: addresses for symbols in same file 

•  Assembler will have marked instructions that require “fix-ups” 
–  Includes all references to labels with unknown addresses 

•  Linker combines files, determines memory layout 
–  Also “fixes” address references that assembler could not take care of 
–  Linker throws error if any label or symbol not defined in combined files 
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Loader 

•  In system without virtual memory, a program might be loaded into a 
different region of memory each time it runs 
–  Loader would then have to adjust memory addresses in code and data 

based on where program is loaded 

–  Notable exception: no change required with PC-relative addresses 

•  In system with virtual memory, no address modification is required 
–  Why?  Let’s review how virtual memory works 
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Virtual memory 
•  All addresses in program are virtual, not physical 
•  Hardware address translation unit dynamically translates  

virtual addresses to physical addresses 
–  Part of MMU (memory management unit) 

0:	
1:	

M-1:	

MMU	

2:	
3:	
4:	
5:	
6:	
7:	

Data	word	

8:	 ...	

CPU	

Memory	

Physical	address	
(PA)	

Virtual	address	
(VA)	
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Virtual memory: a useful abstraction 
•  Operating system maintains page tables that map virtual address space of 

each process to shared physical address space 
–  Each allocated page is either in physical memory or on disk (page fault) 
–  Placement of each page in physical memory flexible, unrelated to other pages 

Physical	memory	
Virtual	memory	

Virtual	memory	

Process	1	

Process	n	

Mapping 
Disk	...

 

Page tables hold mapping  
info for each fixed-size page 
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Virtual memory 
•  Advantages 

–  Allows for multiple processes, provides protection from other processes 
–  User code thinks it has entire memory space to itself 
–  Programs are written, compiled and run without any concern about 

where they will be placed in physical memory 
–  No need to adjust memory addresses when program is loaded 
–  Virtual memory can be larger than physical memory (DRAM) 

•  Disadvantages:  
–  Increases complexity of hardware and OS 
–  High runtime overhead (page faults, translation buffer misses) 
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Tool chain for 
embedded systems 

Note components: 
•   cross-compiler 
•   cross-assembler  
•   linker/locator 
•   no loader 

Questions: 
•  Why was no assembler shown in 

native tool chain? 
•  Why is there no loader? 
•  How does executable file make it 

from host to target? 
•  How does this setup compare with our 

tools? 

cross-assembler cross-compiler 

Object files 
 

linker/locator 

Object files 
 

C and C++ 
source files 

Assembly 
source files 

 
Executable 
file 
 

target system 

operations 
 on host 

Executable file is  
copied to target 
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Cross-Compilers 

•  C code is not perfectly portable: what are consequences? 
–  Assume that C code compiles with native compiler and runs correctly on host 
–  What can cause problems in moving code to target? 

 
•  Using functions before declaring 
•  Using old style function declarations 
•  Word sizes (and hence int,  long,  ptr variables) may be different 
•  Alignment conventions may change data layout (especially within structs) 

int fun(x) float x; 
{ ... } 
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Locator 

•  Quite different functionality than native linker 
–  Determines final memory image of program 

•  No loader required to adjust memory addresses when program is run 

–  Locator can do this because: 
•  No other program will be in memory at runtime; no resource conflicts 
•  Final address of everything can be determined at this point, including all 

kernel and library functions called in application code 

•  Includes mechanism for programmer to specify memory placement 
–  Can you think of examples of placement constraints? 
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Example locator  
output file format 

Other formats exist, with 
similar information  
 
Essential information: 
•  Data to place in memory 
•   Address to write data to 

Another common format:  
•  The actual binary image to be 

copied into ROM 

... 
:10106000FF908193E03400FAA9077B021227BE901B 
:101070008193E0FEA3E0FF128157124FD1125BDB98 
:10108000EF700F1222EBEF70097B057A1279BB121C 
:0510900027BE1212C48E 
:011095002238 
:011096002237 
:10109700E49082AEF012278B7f197E007D807C0062 
:0410A7001281C622CA 
:0110AB002222 
:1010AC007F807E0012808EEF60149082AEE0700321 
... 

Checksum 
for the line The data 

Indication that this line contains 
data (and not other kinds of  
information allowed in hex files) 

Address where these data bytes 
are to be written in ROM 

Count of data bytes on this line (in hex) 

First character 
always a colon 

Intel hex file format 
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Memory placement 

•  Obvious constraints: 
–  Code, initial values of data must be stored in ROM 
–  Writable data must be in RAM at runtime 

•  How does the linker/locator know to put certain things in address 
space corresponding to RAM or ROM? 
–  It doesn’t – it can only do what programmer tells it to 
–  Placement simplified by dividing program and data into segments  

•  Contiguous portions of the runtime program that are similar in content 

–  Each segment can be handled separately 
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Segments 

•  Each segment can be placed as a unit at desired memory address 
•  Examples: 

–  Special “Start Code” segment can automatically be placed where 
processor begins execution after reset.  (Typically main() in C code) 

–  Interrupt vector table can be placed where CPU requires it 
–  Code segments can be placed in ROM 

–  Constant data segments can be placed in ROM 

–  Variable data segments can be placed in RAM 
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Segment creation 

•  Created automatically by compiler 
–  Also happens in desktop systems, but usually transparent to user 

•  In assembly files, programmer must specify segments 
–  Assemblers not sophisticated enough to manage automatically 

–  Naming should be consistent with compiler-generated segments  

•  All systems have similar categories of segments 
–  Actual names depend on tools and developer 
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Segments used:             
start 
code 
udata 
idata 
string 

 

What are characteristics of each? 

How did each get created, named? 

Why is it useful to separate 
segments in this way? 

How does initialized data gets 
initialized? 

Example: segment use 
cross-assembler cross-compiler 

x.c  
code 

linker/locator 

x.c y.c z.asm 

cross-compiler 

x.c  
udata 

x.c  
string 

x.obj y.c  
code 

y.c  
udata 

y.c  
idata 

y.obj z.asm  
code 

z.asm  
udata 

z.asm 
start 

z.obj 

x.c  
string 

z.asm 
start 

x.c  
code 

y.c  
code 

z.asm  
code 

y.c  
idatshadw 

x.c  
udata 
y.c  
udata 

z.asm  
udata 

y.c  
idata 

ROM 

RAM 

idatshadw copied  
to idata at startup 
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How linker/locator knows  
where to place segments 

Instructions can be  
•  given on command line      

(placed in Makefile), or 
•  included in user-created 

assembly file 
 

Starting address or ending 
address may be specified 
 

Segments may be treated 
individually or as a group 

Instructions to the locator: 
-CSTART,IVECS,CODE=0 
-IDATA,UDATA,CSTACK=8000 

CSTART    
IVECS    

CODE   

(unused)    

IDATA    
UDATA   

CSTACK  
(unused)    

Resulting 
program 
in memory: 

Memory 
0 

8000 

ROM 

RAM 
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Handling initialized data 

•  How does normal tool chain (e.g., Linux) 
handle initialization of iFreq in code at 
right? 

–  Is there an instruction in the program 
that writes the initial value to that 
variable? 

•  Does that same approach work on an 
embedded system? 

–  Initial value must be in ROM 
–  Runtime value must be in RAM 
–  Therefore, initial value must be copied 

at startup 

#define FREQ_DEFAULT 2410 
... 
static int iFreq = FREQ_DEFAULT; 
... 
void vSetFreq(int iFreqNew) 
{ 
     iFreq = iFreqNew; 
} 
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x.c  
string 

z.asm 
start 

x.c  
code 

y.c  
code 

z.asm  
code 

y.c  
idatshadw 

x.c  
udata 

y.c  
udata 

z.asm  
udata 

y.c  
idata 

ROM 

RAM 

... 

... 

0000 

8000 

Address space 

•  Initialized data requires allocation of two 
distinct segments in memory space 
-  Initial version (in ROM) 
-  Run-time version (in RAM) 

•  For correct operation, segment must be 
copied from ROM to RAM before 
application begins execution 
-  Some locators automatically insert code 

to do copy, but may require tweaking  
-  Ultimately application code is 

responsible for this copying 
-  Development tools differ in support they 

provide for this operation 

Handling initialized data 
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Other initialization issues 

•  Can we assume that global variables are always initialized to 0? 
–  C standard specifies this, but not true of all embedded tools 
–  Startup code may be inserted to clear memory, but dangerous to assume 

that this is always done 
•  Where are strings stored? 

–  Example:  char *sMSg = “Reactor is melting!”; 

–  Initial value is in ROM; can stay there if all accesses are reads   
–  But what if string is modified?   

•  Perfectly legal C:   strcpy (&sMsg[11], “OK”); 

–  Cross-compilers deal with this problem in different ways 
•  Probably a good idea to see how it is handled in your system 
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Maps provide a quick way of 
checking where the locator 
actually placed segments 

Also useful to know variable 
and function addresses when 
debugging 

Locator Maps 

LINK MAP OF MODULE:   XYZ 
 

 TYPE  BASE  LENGTH  RELOCATION  SEGMENT NAME 
---------------------------------------------------------------------------------------------------------------- 
 
             * * * * * * *   X D A T A   M E M O R Y   * * * * * * * 
 

  0000H  8100H                                        *** GAP *** 
 XDATA  8101H  0001H  UNIT  ?XD?PROGFLSH 
 XDATA  8101H  000CH  UNIT  ?XD?VPROG?PROGFLSH 
 XDATA  810DH  0006H  UNIT  ?XD?CHKSM?PROGFLSH 
 XDATA  8113H  0080H  UNIT  ?C_LIB_XDATA 
 XDATA  8193H  0002H  UNIT  ?XD?MAIN?PAD 
 XDATA  8195H  0002H  UNIT  ?XD?RXCALLBACK?PAD 
 … 
  
       * * * * * * *   C O D E    M E M O R Y   * * * * * * * 
  
  0000H  0017H                                        *** GAP *** 
 CODE  0080H  000FH  UNIT  PROGFLSTSTA 
 CODE  008FH  0055H  UNIT  PROGFLSA 
 CODE  00E4H  01ADH  UNIT  ?PR?VPROG?PROGFLSH 
 CODE  0291H  0073H  UNIT  ?PR?SEND?PROGFLSH 
 CODE  0304H  001DH  UNIT  ?PR?RX?PROGFLSH 
 CODE  0321H  0072H  UNIT  ?PR?CHKSM?PROGFLSH 
 CODE  0393H  007EH  INBLOCK  SCC_INIT 
 CODE  0411H  082EH  UNIT  ?C_LIB_CODE 
 … 

 
 SYMBOL TABLE OF MODULE:  XYZ 

 
 VALUE   TYPE  NAME 

---------------------------------------------------------------------------------------------------------------- 
 - - - - - -   PROC  _FDECIMALASCIITOBYTE 
 X:8301H   SYMBOL  p_b 
 X:8304H   SYMBOL  p_byAscii 
 X:8307H   SYMBOL  sizeofAByAscii 
 D:0007H   SYMBOL  fReturn 
 D:0006H   SYMBOL  bTemp 
 - - - - - -   PROC  _FDECIMALASCIITOWORD 
 X:8308H   SYMBOL  p_w 
 X:830BH   SYMBOL  p_byAscii 
 X:830EH   SYMBOL  sizeofAByAscii 
 … 

Good idea to double check 
placement of critical segments  
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One more complication 

•  RAM is often faster than flash and ROM, so better performance may be 
obtained by executing program in RAM 

•  Requires startup code that copies code segments from ROM to RAM, 
then transfers control to code in RAM 

•  Consider new challenge for locator: 
–  Build a program that is stored at one address (in ROM), but will run 

correctly at a different address (in RAM) 

–  Tricky: requires support from development system to (1) construct 
programs this way and (2) to insert code to perform the copy at start up 
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9.3: How does program get to target? 

•  Several alternatives: 
–  Write it to flash memory on target 

–  Program a PROM chip, then insert into socket on target system 

–  Use a ROM emulator 

–  Use an in-circuit emulator (ICE) 
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•  Flash memory is field programmable 
–  Host can connect to target, reprogram flash without pulling and reinserting 

chips, bending pins, etc. 

•  Requires special program on target that receives new program from 
host via communication link and writes it to flash 
–  Tricky: this program cannot run in flash while flash is being updated, so 

program must copy itself from flash to RAM before executing 

–  Locator will have built program to run at original location in flash, but it 
has to run correctly in new location in RAM 
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Flash and field upgrades 

•  Product code fixes can be expensive 
–  Product must be physically present to upgrade memory, or customer must 

be able to cause firmware upgrade in the field 

•  Some products are obvious candidates for upgrading in field 
–  Cell phones  
–  Satellite/cable TV receivers 
–  Digital radios 

•  Tricky: what if communication link fails during update? 
–  Disaster if neither old nor new code works 
–  How can designers ensure this never happens? 
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PROM Programmer 

•  Writes executable code into a PROM 

•  PROM is then inserted into memory socket 
on the target system 

•  Okay for production mode, but inconvenient 
during development 
–  Tiresome to pull, program, and reinsert chip 

to test each new change in software 
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ROM emulator 

Serial or network 
connection to host 

Ribbon cable 

Probe that plugs into  
memory chip socket 

Target system 

• Device plugs into memory socket, 
looks like ROM to target 

• Host can easily make changes to 
memory that target sees 

•  Particularly convenient during 
development and debugging 

•  In shipped system, ROM will be 
inserted into memory socket 

ROM emulator 
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In-circuit emulator 

•  Replaces microprocessor in target system: 
plugs into CPU socket 

•  Memory accesses will access memory in 
emulator instead of memory on target 
system 

•  Useful for debugging and development; 
shipped products will have microprocessor 
in its place 
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Michael Barr, EE Times, April 2010, November 2010 
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Barr: Quote 
Finding and killing latent bugs in embedded software is a difficult 
business. Heroic efforts and expensive tools are often required to trace 
backward from an observed crash, hang, or other unplanned run-time 
behavior to the root cause. In the worst case, the root cause damages 
the code or data in a way that the system still appears to work fine or 
mostly fine – at least for a while.  
Too often engineers give up trying to discover the cause of infrequent 
anomalies that cannot be easily reproduced in the lab – dismissing 
them as user errors or “glitches.” Yet these ghosts in the machine live 
on. Here’s a guide to the most frequent root causes of difficult to 
reproduce bugs. Look for these top bugs whenever you are reading 
firmware source code. And follow the recommended best practices to 
prevent them from happening to you again. 
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Top 10 
10. Jitter 

Problem: Having too much variation in timing between runs of same task or 
job. Affects accuracy in sampling a physical signal (e.g. A/D converter, 
optical encoder). 

Solution: Increase task priority, or put code in an ISR rather than a task.  
9.  Incorrect priority assignment 

Problem: Using ad hoc priorities for tasks that seem to work in testing, but 
that may fail in field workloads. 

Solution: Assign task and ISR priorities using a rate monotonic approach that 
proves that worst-case “transient overloads” can be handled. 
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Top 10 
8.  Priority inversion 

Problem: Arises using RTOS with fixed task priorities; high-priority task 
misses deadline because lower-priority task holds resource exclusively, 
and medium priority task has CPU. 

Solution: Use RTOS with priority-inversion work-around (e.g. priority 
inheritance), call only appropriate routines.  

7.  Deadlock 
Problem: Circular dependency blocks multiple tasks. 
Solution: Never attempt or require simultaneous acquisition of multiple 

exclusive resources; alternately, acquire exclusive resources in same 
order system-wide. 
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Top 10 
6.  Memory leak 

Problem: Systems with dynamic memory allocation that fail to return all 
blocks of memory to available pool; eventually system runs out of free 
space. 

Solution: Ensure that every allocated object has a designated destroyer to free 
memory it uses; follow a clear ownership pattern for all objects.  

5.  Heap fragmentation 
Problem: Heap (pool used by dynamic memory allocator) consists only of 

smaller, non-adjacent fragments after many allocations and deletions. 
Next allocation request fails, even though enough memory is available. 

Solution: Avoid use of the heap; if dynamic memory allocation is required, 
make all requests the same size, or use memory pools of fixed size 
blocks. 
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Top 10 
4.  Stack overflow 

Problem: Stack size can’t handle rare worst-case needs. Testing cannot 
guarantee that stacks are big enough. Overflow clobbers arbitrary data or 
instructions. 

Solution: Perform detailed static analysis of control flow; repeat every time 
code changes. Also, fill stacks with specific pattern, have supervisor task 
test to ensure no changes above high-water mark.  

3.  Missing volatile keyword 
Problem: Failure to tag certain variables as volatile changes system 

behavior with compiler optimization. 
Solution: Use for all shared globals, pointers to memory-mapped peripherals, 

and delay loop counters. 
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Top 10 
2.  Non-reentrant function 

Problem: Shared function contains unrecognized critical sections. Not limited 
to your code: may be third-party middleware, legacy code, device 
drivers, or even standard library routines. 

Solution: If each module is not intrinsically reentrant, add and use mutex 
(semaphore) that protects shared resource.  

1.  Race condition  
Problem: Outcome of 2+ execution threads depends on precise instruction 

execution order. 
Solution: Recognize critical sections (accesses to shared objects); ensure 

atomic execution with appropriate preemption-limiting mechanism;  
use naming conventions (e.g. “g_” prefix) for all potentially shared 
objects so that risk is obvious to everyone who reads the code. 
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Chapter 10: Debugging 

•  Quote from author: 

If you write code with lots of bugs in it, you will ship code with lots of 
bugs in it. 

•  What does this say about testing and debugging? 
–  Why are these hard in general? 
–  Why are they even harder in embedded systems? 

•  How tolerant is the world of software bugs, in general? 
–  Do consumers expect embedded systems to be more reliable? 
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Avoiding software bugs 

•  The best approach would be to produce bug-free code, but virtually 
all software has errors 

•  Developers are foolish if they don’t do a lot of testing, but it cannot 
be their primary technique for ensuring software quality  

•  Unfortunately, embedded systems pose special challenges for testing 
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Problems testing embedded software 

•  Target hardware may not be available or stable early on while code is being 
written and debugged 

•  Difficult to generate all pathological timing scenarios 
–  Impossible to test all combinations, and difficult to know which combinations 

could cause a problem 

•  Some bugs can be virtually impossible to reproduce 
–  Caused by specific event sequence and timing  

–  Very hard to generate using standard software test suites 

•  Embedded systems generally lack detailed logging capabilities to identify 
cause of failures 
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Testing 

•  Conclusion: can’t rely on extensive testing on target system  
–  You’ll inevitably do some, but it can’t be your main plan of attack 

–  What else can you do? 

•  How about testing on the host? 
–  Debugging and testing is more convenient, but full code won’t run 

–  Timing is altered, so not much help with race-condition/shared-data bugs 

–  Still, more useful than one might think 

•  Let’s consider two ways to test embedded software on the host system 
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•  In design phase, separate the application 
code into hardware dependent code (HD) 
and hardware independent code (HI) 

•  Essential: creation of a clean interface 
between HD and HI 

•  HI is just C code – easy to compile and run 
on other computers 

•  HD portion is more problematic 

Testing on the host: method 1 

Hardware-independent 
code 

Hardware-dependent 
code 

Target system 

Hardware 

HI 

HD 
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Hardware dependent code 

•  It is clearly not portable, yet it is crucial to system operation: 
–  It interfaces to sensors: all system events and interrupts that cause HI 

code to run come through HD code 
–  It interfaces to actuators: all externally observable actions taken by HI 

code go through device drivers in the HD code 

•  Conclusion: system won’t actually do anything meaningful without 
the HD code    
–  So how could we test the HI code on the host? 

425 F19 8:41 ©J Archibald 

Solution: construct test scaffold code with same entry points (API) as  
HD portion of code 

Scaffold code triggers actions in HI code; it also responds to actions by 
writing log files, and mimicking hardware actions at a high level,  
“faking” the behavior of the hardware subsystems 

This approach does not require a detailed, low-level hardware simulator 

Hardware-independent 
code 

Test scaffold code 

Host system 

Keyboard Display Disk 

Hardware-independent 
code 

Hardware-dependent 
code 

Target system 

Hardware 
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Testing the system 

•  ISRs and interrupt handlers must also be divided into HD, HI parts 
–  Required organization: HD code must call the HI part 

–  Scaffold code will mimic HD actions, calling HI code to test its response 

–  This can be more effective and thorough than testing HI code on target 

•  Consider challenge of generating tick interrupts 

–  Clearly responsibility of test scaffold code, but how to implement? 

•  Generate automatically at fixed time intervals? 

•  Generate directly and explicitly? 

–  The latter is preferred: more likely to turn up errors with unusual combinations of 
events occurring within same tick interval 
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Testing the system 
•  Important to use a scripting mechanism for convenience 

–  Scaffold code reads script file that tells it what events to generate 

–  General form: take this action (call this HI function) with these parameters at this time 
–  Challenge: events are platform specific, so custom script “language” is needed 

•  Good news: it is not difficult to create simple parser that reads files and generates 
specified function calls 

–  Even simple tools can be very effective  
–  Well worth the effort to consider testing in design phase, and to build tools that make 

testing easier 

•  For ease of use, scaffold code can output results interleaved with script input 
–  Makes it easy to follow actions and confirm correct operation 
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# Frame arrives (beacon with no element) 
# Dst  Src  Ctrl           Typ  Stn  Timestamp 
mr/56  ab   01234566789ab  30   00   6a6a 
 
# Backoff timeout expires  
# (Software should send association frame) 
kt0 
 
# Timeout expires again  
# (Association process should fail) 
kt0 
 
# Some time passes ---  
# (Software should retry sending the association frame) 
kn2 
kn2 
 
# Another beacon frame arrives 
# Dst  Src  Ctrl           Typ  Stn  Timestamp 
mr/56  ab   01234566789ab  30   00   6a6a 
 
# More time passes  
# (Should NOT send another association until  
#  backoff time expires) 
kn1 
 
# Backoff timeout expires  
#(System should send association frame) 
kt0 
. 
. 
. 

Script file example 
•  For cordless bar-code scanner 

•  Each command causes scaffold code to 
call an interrupt routine 

•  kt0: call timer interrupt routine 

•  kn: calls another timer routine a 
specified number of times 

•  mr: writes data into memory (as if 
received via radio) and calls radio 
interrupt routine  
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Sample output 
from script 

How useful 
would this 

mechanism be? 

Output from scaffold  
code shown in red 

# Frame arrives (beacon with no element) 
# Dst  Src  Ctrl           Typ  Stn  Timestamp 
mr/56  ab   01234566789ab  30   00   6a6a 
 
# Backoff timeout expires  
# (Software should send association frame) 
kt0 
-->SENDING FRAME: ab ff 01 23 45 67 89 ab 50 09 30 09 01 02 05 03 
 
# Timeout expires again  
# (Association process should fail) 
kt0 
 
# Some time passes ---  
# (Software should retry sending the association frame) 
kn2 
kn2 
-->SENDING FRAME: ab ff 01 23 45 67 89 ab 50 09 30 09 01 02 05 03 
 
 
# Another beacon frame arrives 
# Dst  Src  Ctrl           Typ  Stn  Timestamp 
mr/56  ab   01234566789ab  30   00   6a6a 
 
# More time passes  
# (Should NOT send another association until  
#  backoff time expires) 
kn1 
 
# Backoff timeout expires  
#(System should send association frame) 
kt0 
-->SENDING FRAME: ab ff 01 23 45 67 89 ab 50 09 30 09 01 02 05 03 
 
. 
. 
. 
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Possible objections 

•  “Too much of software is hardware dependent” 
–  Actually most software is hardware independent and can be tested in this way    

(See next slide) 

•  “Scaffold software is too much work to create” 
–  It is actually quite simple – it just reads a script and calls specified HI 

functions; it adds output when its functions are called from HI code  

•  “You’d need a version of RTOS running on host” 
–  Most vendors happily supply this 
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Fraction of “Telegraph” code  
that is hardware-dependent 

Get frames from 
the network. 

Write frames to 
the network. 

Analyze LLAP 
frames. 

Analyze NBP 
frames. 

Analyze DDP 
frames. Analyze ADSP 

frames. 
Finish ADSP 
connections. Keep queue of 

print jobs. 
Establish ADSP 

connections. 

Acknowledge 
ADSP data. 

Keep track of 
printer status. 

Keep queue of 
outgoing bytes. 

Write bytes to 
the serial port. 

Get bytes from 
the serial port. 

Keep queue of 
incoming bytes. 

Build outgoing 
ADSP frames. 

Set hardware 
timer. 

Track NDP 
timeouts. 

Track ADSP 
timeouts. 

Build outgoing 
NBP frames. 

Add DDP 
header to frames. 

Add LLAP 
header to frames. 

Respond to 
LLAP frames. 

Hardware-dependent 
block 

Hardware-independent 
block 

5 blocks 

18 blocks 

HI 

HD 
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Limitations of testing on host 

•  Some things cannot be tested, including 
–  Software/hardware interaction 

–  Response time and throughput 

–  Shared data problems and timing pathologies 

–  Portability problems (endianness, packed data-structures, etc.) 

•  But it makes sense to test as much as you can on the host before testing 
on the target, since that is more difficult 
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Testing on the host: method 2 

•  Use an instruction set simulator that runs on host 
•  Uses actual binary image that will run on the target, as constructed by 

cross-compiler and linker/locator 
–  Avoids portability problems with word-size, endianness, etc. 
–  Tests both assembly and C code 

•  What capabilities must the simulator have to be useful? 
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Simulator requirements 
•  Must simulate all assembly instructions of target CPU 
•  Must simulate all built in peripherals at some level 

–  Timers, DMA, I/O devices, etc. 

•  Must model RAM and ROM at proper addresses 
•  Should provide a debugger interface: 

–  Set breakpoints 
–  Examine/change memory 
–  Single step execution 

•  Should track timing in terms of instructions or bus cycles 
–  Can give accurate measurements of the run time of various routines 
–  Can give some insight into throughput and response time 

How does our 425 simulator compare?  
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Limitations of this approach 
•  Unlikely that you can simply buy the simulator you want  

–  Commercial simulator will know nothing about your custom hardware 

–  May be possible to add desired functionality yourself, but vendors don’t 
generally make their source code available 

•  Simulator is unlikely to reveal obscure shared-data bugs 
–  You are unlikely to do exhaustive testing to turn up all problems 

•  Tough to use scripting because simulators don’t usually give access to 
host’s keyboard, screen, and file system 

–  425 simulator is unusual in this regard – by design 

•  Recommendation: use simulator to test what cannot be tested using 
scaffold approach: 

–  Startup code, ISRs, etc. 
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Section 10.3: assert macros 
•  Low cost technique that catches lots of bugs 
•  Sprinkle “assert” macro calls throughout code: 

    assert (pFrame != NULL); 
    assert (byMacAddrFrom <= ADDR_MAX); 
    assert (pframe->byMode & MAX_MODE_USE_STATION); 
    ... 

•  Makes explicit assumptions about machine state (global variable or parameter 
values) 

•  If condition is true, nothing happens.  If false, output is generated, generally 
halting execution. Example: 

Assertion failed: ptr != 0, file foo.c, line 27      Abort (coredump) 

•  Implemented as macros so they can be turned off (#undef debug) and thus 
generate no code in shipped product 
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Example definition  
(in assert.h) 

#ifdef NDEBUG 
   #define assert(bool_expression)  /* define as nothing */ 
#else 
   #define assert(bool_expression)        \ 
       if (bool_expression)                        \ 
            ;                                                  \ 
       else                                                  \ 
           bad_assertion(__FILE__, __LINE__, #bool_expression); 
#endif 
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Benefits of assertions 

•  Errors are caught much sooner, bringing the failure point closer to the error itself 

•  Quote from article in Linux magazine: 

“Enthusiastic use of assert( ) can turn a three-day debug fest into a three minute bug 
fix.  Practice the lazy developer mantra: An assertion failed is an hour saved.” 

•  Usually requires just  #include <assert.h>  and calls to assert( )   

–  Make a practice of using in all your code, not just embedded applications 

–  Mere presence of assertions helps document operational details and assumptions  

•  One common use: inspect function parameters 
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Assertions in embedded systems 
•  Particularly useful in development and when testing on host 
•  Harder to use on target system: typically has no screen to write “bad_assertion” 

message to 
•  Things you could do when assertion fails: 

–  Make machine enter some easily detected state.  Examples: 
•  Turn off interrupts, spin in loop 
•  Turn on special pattern of LEDs 

–  Write one or more special error codes to a specific memory location  
•  Values could then be determined with a logic analyzer 

–  Cause emulator or target debugger to stop execution somehow 
•  Could execute an illegal instruction, for example 
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Section 10.4: Using other tools 

•  Quote from text: 

“No book can do true justice to the experience of tracking down some subtle, 
inconsistent bug that only happens once every several hours and then only 
when your back is turned.” 

•  You can probably relate, but worse on “real” projects due to limited 
visibility into target system 

•  What do you do?  Bring in the heavy-duty tools 
–  Volt meters, ohm meters, oscilloscopes, logic analyzers 
–  Not part of typical programmers tool set! 
–  What can each of these do for you and what are their limitations? 
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Volt meters, ohm meters, multi-meters 

•  Is the hardware working? 
–  Do all chips in the circuit have power? 
–  Is there a broken lead? 
–  Is the wiring possibly incorrect? 
–  Is a fuse blown? 
–  Is everything connected that should be? 
–  Is something connected that shouldn’t be? 
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Oscilloscopes 

•  Graphs voltage vs. time, potentially multiple signals 
–  Can select trigger to start operation 

•  Typical questions that can be answered: 
–  Is anything running? 
–  Is processor getting a decent clock input? 
–  Is memory getting chip-enable signals? 
–  Are output signals reasonable? 
–  Is there a loading problem or a bus fight? 
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Logic analyzers 

•  Captures logical signals, stores in memory, graphs on screen 
–  Can record many signals simultaneously – up to several hundred if you  

have $ and patience! 
•  Typical operation: trigger on symptom of problem, then look backward 

through captured data to find cause 
–  Triggering mechanism can be very complex 

•  Timing mode: samples at fixed frequency 
–  Captures data without reference to signals it records 

•  State mode: captures based on events observed in system 
–  Typical use: record what instructions executed, what addresses accessed 
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In-circuit emulators 
•  Hardware emulator that plugs into CPU socket, appears to target 

system as regular microprocessor 
–  Programmable, controlled by host 

•  Functionality similar to desktop debugger: 
–  Set breakpoints 
–  Single-step 
–  Dump register and memory contents 

•  Often includes overlay memory that can be used instead of actual 
memory in the target system 
–  Overlays specify subset of memory, RAM or ROM 
–  On memory accesses in specified ranges, emulator uses overlay 
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Software-only monitor / 
debugging kernel 

•  Small debugging program in ROM on target system 
–  Receives software over serial line, copies to RAM, and causes it to run 
–  Provides debugging interface on host 
–  Removed in final product 

•  Typical functionality from interface on host: 
–  Set breakpoints 
–  Examine memory and registers 

•  Typical methodology: 
–  Compile code and download to target via monitor 
–  Set breakpoints, run, and debug on target 

•  Requires no hardware modifications other than connection to host 
–  Limitations: timing changed, breakpoints problematic in real-time systems, 

hardware breakpoint support required for code in flash 
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Trends making testing more difficult 

•  Pins on chips are getting closer 
–  Harder to attach logic analyzers, oscilloscopes 

•  ASICs, FPGAs are replacing many simpler parts 
–  Much more internal state that can’t be observed externally 

•  Microprocessors with on-chip caches 
–  You can’t monitor accesses to internal cache 

–  You can typically turn caches off, but this changes execution timing 

–  Caches, pipelines complicate execution timing 


