
1

425 F19 8:1 ©J Archibald

Chapter 9: Development tools

•  Development tools for embedded systems must address some interesting
and unique challenges

•  Let’s explore by considering a “native tool chain” – tools that run on
the host and prepare a program to run on the host

•  We’ll then explore the differences of embedded tools that run on the
host and prepare a program for a different target

425 F19 8:2 ©J Archibald

ABBOTT.C
int idunno;
…
whosonfirst(idunno);
…

Linker: resolves addresses of
different object files in
terms of offsets from base
address of program

Loader (for systems without
virtual memory): loads
program, modifies absolute
addresses in executable based
on actual starting location in
physical memory

Compiler: translates C source
files to machine instructions,
produces object files

Native tool chain

compiler compiler

linker

loader

HAHAHA.EXE
…
MOVE R1,2388
CALL 1547
…
…
…
MOVE R1, R5
…
(value of idunno)
…

1547

2388

HAHAHA.EXE
…
MOVE R1,22388
CALL 21547
…
…
…
MOVE R1, R5
…
(value of idunno)
…

memory

21547

22388

COSTELLO.C
…
int whosonfirst(int x)
{
 …
}

ABBOTT.OBJ
…
MOVE R1,(idunno)
CALL whosonfirst
…

COSTELLO.OBJ
…
…
whosonfirst:
…

425 F19 8:3 ©J Archibald

Linker

•  Determines addresses of labels that assembler could not resolve
–  Obvious: extern functions and variables
–  Less obvious: addresses for symbols in same file

•  Assembler will have marked instructions that require “fix-ups”
–  Includes all references to labels with unknown addresses

•  Linker combines files, determines memory layout
–  Also “fixes” address references that assembler could not take care of
–  Linker throws error if any label or symbol not defined in combined files

425 F19 8:4 ©J Archibald

Loader

•  In system without virtual memory, a program might be loaded into a
different region of memory each time it runs
–  Loader would then have to adjust memory addresses in code and data

based on where program is loaded

–  Notable exception: no change required with PC-relative addresses

•  In system with virtual memory, no address modification is required
–  Why? Let’s review how virtual memory works

425 F19 8:5 ©J Archibald

Virtual memory
•  All addresses in program are virtual, not physical
•  Hardware address translation unit dynamically translates

virtual addresses to physical addresses
–  Part of MMU (memory management unit)

0:	
1:	

M-1:	

MMU	

2:	
3:	
4:	
5:	
6:	
7:	

Data	word	

8:	 ...	

CPU	

Memory	

Physical	address	
(PA)	

Virtual	address	
(VA)	

425 F19 8:6 ©J Archibald

Virtual memory: a useful abstraction
•  Operating system maintains page tables that map virtual address space of

each process to shared physical address space
–  Each allocated page is either in physical memory or on disk (page fault)
–  Placement of each page in physical memory flexible, unrelated to other pages

Physical	memory	
Virtual	memory	

Virtual	memory	

Process	1	

Process	n	

Mapping
Disk	...

Page tables hold mapping
info for each fixed-size page

2

425 F19 8:7 ©J Archibald

Virtual memory
•  Advantages

–  Allows for multiple processes, provides protection from other processes
–  User code thinks it has entire memory space to itself
–  Programs are written, compiled and run without any concern about

where they will be placed in physical memory
–  No need to adjust memory addresses when program is loaded
–  Virtual memory can be larger than physical memory (DRAM)

•  Disadvantages:
–  Increases complexity of hardware and OS
–  High runtime overhead (page faults, translation buffer misses)

425 F19 8:8 ©J Archibald

Tool chain for
embedded systems

Note components:
•  cross-compiler
•  cross-assembler
•  linker/locator
•  no loader

Questions:
•  Why was no assembler shown in

native tool chain?
•  Why is there no loader?
•  How does executable file make it

from host to target?
•  How does this setup compare with our

tools?

cross-assembler cross-compiler

Object files

linker/locator

Object files

C and C++
source files

Assembly
source files

Executable
file

target system

operations
 on host

Executable file is
copied to target

425 F19 8:9 ©J Archibald

Cross-Compilers

•  C code is not perfectly portable: what are consequences?
–  Assume that C code compiles with native compiler and runs correctly on host
–  What can cause problems in moving code to target?

•  Using functions before declaring
•  Using old style function declarations
•  Word sizes (and hence int, long, ptr variables) may be different
•  Alignment conventions may change data layout (especially within structs)

int fun(x) float x;
{ ... }

425 F19 8:10 ©J Archibald

Locator

•  Quite different functionality than native linker
–  Determines final memory image of program

•  No loader required to adjust memory addresses when program is run

–  Locator can do this because:
•  No other program will be in memory at runtime; no resource conflicts
•  Final address of everything can be determined at this point, including all

kernel and library functions called in application code

•  Includes mechanism for programmer to specify memory placement
–  Can you think of examples of placement constraints?

425 F19 8:11 ©J Archibald

Example locator
output file format

Other formats exist, with
similar information

Essential information:
•  Data to place in memory
•  Address to write data to

Another common format:
•  The actual binary image to be

copied into ROM

...
:10106000FF908193E03400FAA9077B021227BE901B
:101070008193E0FEA3E0FF128157124FD1125BDB98
:10108000EF700F1222EBEF70097B057A1279BB121C
:0510900027BE1212C48E
:011095002238
:011096002237
:10109700E49082AEF012278B7f197E007D807C0062
:0410A7001281C622CA
:0110AB002222
:1010AC007F807E0012808EEF60149082AEE0700321
...

Checksum
for the line The data

Indication that this line contains
data (and not other kinds of
information allowed in hex files)

Address where these data bytes
are to be written in ROM

Count of data bytes on this line (in hex)

First character
always a colon

Intel hex file format

425 F19 8:12 ©J Archibald

Memory placement

•  Obvious constraints:
–  Code, initial values of data must be stored in ROM
–  Writable data must be in RAM at runtime

•  How does the linker/locator know to put certain things in address
space corresponding to RAM or ROM?
–  It doesn’t – it can only do what programmer tells it to
–  Placement simplified by dividing program and data into segments

•  Contiguous portions of the runtime program that are similar in content

–  Each segment can be handled separately

3

425 F19 8:13 ©J Archibald

Segments

•  Each segment can be placed as a unit at desired memory address
•  Examples:

–  Special “Start Code” segment can automatically be placed where
processor begins execution after reset. (Typically main() in C code)

–  Interrupt vector table can be placed where CPU requires it
–  Code segments can be placed in ROM

–  Constant data segments can be placed in ROM

–  Variable data segments can be placed in RAM

425 F19 8:14 ©J Archibald

Segment creation

•  Created automatically by compiler
–  Also happens in desktop systems, but usually transparent to user

•  In assembly files, programmer must specify segments
–  Assemblers not sophisticated enough to manage automatically

–  Naming should be consistent with compiler-generated segments

•  All systems have similar categories of segments
–  Actual names depend on tools and developer

425 F19 8:15 ©J Archibald

Segments used:
start
code
udata
idata
string

What are characteristics of each?

How did each get created, named?

Why is it useful to separate
segments in this way?

How does initialized data gets
initialized?

Example: segment use
cross-assembler cross-compiler

x.c
code

linker/locator

x.c y.c z.asm

cross-compiler

x.c
udata

x.c
string

x.obj y.c
code

y.c
udata

y.c
idata

y.obj z.asm
code

z.asm
udata

z.asm
start

z.obj

x.c
string

z.asm
start

x.c
code

y.c
code

z.asm
code

y.c
idatshadw

x.c
udata
y.c
udata

z.asm
udata

y.c
idata

ROM

RAM

idatshadw copied
to idata at startup

425 F19 8:16 ©J Archibald

How linker/locator knows
where to place segments

Instructions can be
•  given on command line

(placed in Makefile), or
•  included in user-created

assembly file

Starting address or ending
address may be specified

Segments may be treated
individually or as a group

Instructions to the locator:
-CSTART,IVECS,CODE=0
-IDATA,UDATA,CSTACK=8000

CSTART
IVECS

CODE

(unused)

IDATA
UDATA

CSTACK
(unused)

Resulting
program
in memory:

Memory
0

8000

ROM

RAM

425 F19 8:17 ©J Archibald

Handling initialized data

•  How does normal tool chain (e.g., Linux)
handle initialization of iFreq in code at
right?

–  Is there an instruction in the program
that writes the initial value to that
variable?

•  Does that same approach work on an
embedded system?

–  Initial value must be in ROM
–  Runtime value must be in RAM
–  Therefore, initial value must be copied

at startup

#define FREQ_DEFAULT 2410
...
static int iFreq = FREQ_DEFAULT;
...
void vSetFreq(int iFreqNew)
{
 iFreq = iFreqNew;
}

425 F19 8:18 ©J Archibald

x.c
string

z.asm
start

x.c
code

y.c
code

z.asm
code

y.c
idatshadw

x.c
udata

y.c
udata

z.asm
udata

y.c
idata

ROM

RAM

...

...

0000

8000

Address space

•  Initialized data requires allocation of two
distinct segments in memory space
-  Initial version (in ROM)
-  Run-time version (in RAM)

•  For correct operation, segment must be
copied from ROM to RAM before
application begins execution
-  Some locators automatically insert code

to do copy, but may require tweaking
-  Ultimately application code is

responsible for this copying
-  Development tools differ in support they

provide for this operation

Handling initialized data

4

425 F19 8:19 ©J Archibald

Other initialization issues

•  Can we assume that global variables are always initialized to 0?
–  C standard specifies this, but not true of all embedded tools
–  Startup code may be inserted to clear memory, but dangerous to assume

that this is always done
•  Where are strings stored?

–  Example: char *sMSg = “Reactor is melting!”;

–  Initial value is in ROM; can stay there if all accesses are reads
–  But what if string is modified?

•  Perfectly legal C: strcpy (&sMsg[11], “OK”);

–  Cross-compilers deal with this problem in different ways
•  Probably a good idea to see how it is handled in your system

425 F19 8:20 ©J Archibald

Maps provide a quick way of
checking where the locator
actually placed segments

Also useful to know variable
and function addresses when
debugging

Locator Maps

LINK MAP OF MODULE: XYZ

 TYPE BASE LENGTH RELOCATION SEGMENT NAME
--

 * * * * * * * X D A T A M E M O R Y * * * * * * *

 0000H 8100H *** GAP ***
 XDATA 8101H 0001H UNIT ?XD?PROGFLSH
 XDATA 8101H 000CH UNIT ?XD?VPROG?PROGFLSH
 XDATA 810DH 0006H UNIT ?XD?CHKSM?PROGFLSH
 XDATA 8113H 0080H UNIT ?C_LIB_XDATA
 XDATA 8193H 0002H UNIT ?XD?MAIN?PAD
 XDATA 8195H 0002H UNIT ?XD?RXCALLBACK?PAD
 …

 * * * * * * * C O D E M E M O R Y * * * * * * *

 0000H 0017H *** GAP ***
 CODE 0080H 000FH UNIT PROGFLSTSTA
 CODE 008FH 0055H UNIT PROGFLSA
 CODE 00E4H 01ADH UNIT ?PR?VPROG?PROGFLSH
 CODE 0291H 0073H UNIT ?PR?SEND?PROGFLSH
 CODE 0304H 001DH UNIT ?PR?RX?PROGFLSH
 CODE 0321H 0072H UNIT ?PR?CHKSM?PROGFLSH
 CODE 0393H 007EH INBLOCK SCC_INIT
 CODE 0411H 082EH UNIT ?C_LIB_CODE
 …

 SYMBOL TABLE OF MODULE: XYZ

 VALUE TYPE NAME

--
 - - - - - - PROC _FDECIMALASCIITOBYTE
 X:8301H SYMBOL p_b
 X:8304H SYMBOL p_byAscii
 X:8307H SYMBOL sizeofAByAscii
 D:0007H SYMBOL fReturn
 D:0006H SYMBOL bTemp
 - - - - - - PROC _FDECIMALASCIITOWORD
 X:8308H SYMBOL p_w
 X:830BH SYMBOL p_byAscii
 X:830EH SYMBOL sizeofAByAscii
 …

Good idea to double check
placement of critical segments

425 F19 8:21 ©J Archibald

One more complication

•  RAM is often faster than flash and ROM, so better performance may be
obtained by executing program in RAM

•  Requires startup code that copies code segments from ROM to RAM,
then transfers control to code in RAM

•  Consider new challenge for locator:
–  Build a program that is stored at one address (in ROM), but will run

correctly at a different address (in RAM)

–  Tricky: requires support from development system to (1) construct
programs this way and (2) to insert code to perform the copy at start up

425 F19 8:22 ©J Archibald

9.3: How does program get to target?

•  Several alternatives:
–  Write it to flash memory on target

–  Program a PROM chip, then insert into socket on target system

–  Use a ROM emulator

–  Use an in-circuit emulator (ICE)

425 F19 8:23 ©J Archibald

•  Flash memory is field programmable
–  Host can connect to target, reprogram flash without pulling and reinserting

chips, bending pins, etc.

•  Requires special program on target that receives new program from
host via communication link and writes it to flash
–  Tricky: this program cannot run in flash while flash is being updated, so

program must copy itself from flash to RAM before executing

–  Locator will have built program to run at original location in flash, but it
has to run correctly in new location in RAM

425 F19 8:24 ©J Archibald

Flash and field upgrades

•  Product code fixes can be expensive
–  Product must be physically present to upgrade memory, or customer must

be able to cause firmware upgrade in the field

•  Some products are obvious candidates for upgrading in field
–  Cell phones
–  Satellite/cable TV receivers
–  Digital radios

•  Tricky: what if communication link fails during update?
–  Disaster if neither old nor new code works
–  How can designers ensure this never happens?

5

425 F19 8:25 ©J Archibald

PROM Programmer

•  Writes executable code into a PROM

•  PROM is then inserted into memory socket
on the target system

•  Okay for production mode, but inconvenient
during development
–  Tiresome to pull, program, and reinsert chip

to test each new change in software

425 F19 8:26 ©J Archibald

ROM emulator

Serial or network
connection to host

Ribbon cable

Probe that plugs into
memory chip socket

Target system

• Device plugs into memory socket,
looks like ROM to target

• Host can easily make changes to
memory that target sees

•  Particularly convenient during
development and debugging

•  In shipped system, ROM will be
inserted into memory socket

ROM emulator

425 F19 8:27 ©J Archibald

In-circuit emulator

•  Replaces microprocessor in target system:
plugs into CPU socket

•  Memory accesses will access memory in
emulator instead of memory on target
system

•  Useful for debugging and development;
shipped products will have microprocessor
in its place

425 F19 8:28 ©J Archibald
Michael Barr, EE Times, April 2010, November 2010

425 F19 8:29 ©J Archibald

Barr: Quote
Finding and killing latent bugs in embedded software is a difficult
business. Heroic efforts and expensive tools are often required to trace
backward from an observed crash, hang, or other unplanned run-time
behavior to the root cause. In the worst case, the root cause damages
the code or data in a way that the system still appears to work fine or
mostly fine – at least for a while.
Too often engineers give up trying to discover the cause of infrequent
anomalies that cannot be easily reproduced in the lab – dismissing
them as user errors or “glitches.” Yet these ghosts in the machine live
on. Here’s a guide to the most frequent root causes of difficult to
reproduce bugs. Look for these top bugs whenever you are reading
firmware source code. And follow the recommended best practices to
prevent them from happening to you again.

425 F19 8:30 ©J Archibald

Top 10
10. Jitter

Problem: Having too much variation in timing between runs of same task or
job. Affects accuracy in sampling a physical signal (e.g. A/D converter,
optical encoder).

Solution: Increase task priority, or put code in an ISR rather than a task.
9. Incorrect priority assignment

Problem: Using ad hoc priorities for tasks that seem to work in testing, but
that may fail in field workloads.

Solution: Assign task and ISR priorities using a rate monotonic approach that
proves that worst-case “transient overloads” can be handled.

6

425 F19 8:31 ©J Archibald

Top 10
8. Priority inversion

Problem: Arises using RTOS with fixed task priorities; high-priority task
misses deadline because lower-priority task holds resource exclusively,
and medium priority task has CPU.

Solution: Use RTOS with priority-inversion work-around (e.g. priority
inheritance), call only appropriate routines.

7. Deadlock
Problem: Circular dependency blocks multiple tasks.
Solution: Never attempt or require simultaneous acquisition of multiple

exclusive resources; alternately, acquire exclusive resources in same
order system-wide.

425 F19 8:32 ©J Archibald

Top 10
6. Memory leak

Problem: Systems with dynamic memory allocation that fail to return all
blocks of memory to available pool; eventually system runs out of free
space.

Solution: Ensure that every allocated object has a designated destroyer to free
memory it uses; follow a clear ownership pattern for all objects.

5. Heap fragmentation
Problem: Heap (pool used by dynamic memory allocator) consists only of

smaller, non-adjacent fragments after many allocations and deletions.
Next allocation request fails, even though enough memory is available.

Solution: Avoid use of the heap; if dynamic memory allocation is required,
make all requests the same size, or use memory pools of fixed size
blocks.

425 F19 8:33 ©J Archibald

Top 10
4. Stack overflow

Problem: Stack size can’t handle rare worst-case needs. Testing cannot
guarantee that stacks are big enough. Overflow clobbers arbitrary data or
instructions.

Solution: Perform detailed static analysis of control flow; repeat every time
code changes. Also, fill stacks with specific pattern, have supervisor task
test to ensure no changes above high-water mark.

3. Missing volatile keyword
Problem: Failure to tag certain variables as volatile changes system

behavior with compiler optimization.
Solution: Use for all shared globals, pointers to memory-mapped peripherals,

and delay loop counters.

425 F19 8:34 ©J Archibald

Top 10
2. Non-reentrant function

Problem: Shared function contains unrecognized critical sections. Not limited
to your code: may be third-party middleware, legacy code, device
drivers, or even standard library routines.

Solution: If each module is not intrinsically reentrant, add and use mutex
(semaphore) that protects shared resource.

1. Race condition
Problem: Outcome of 2+ execution threads depends on precise instruction

execution order.
Solution: Recognize critical sections (accesses to shared objects); ensure

atomic execution with appropriate preemption-limiting mechanism;
use naming conventions (e.g. “g_” prefix) for all potentially shared
objects so that risk is obvious to everyone who reads the code.

425 F19 8:35 ©J Archibald

Chapter 10: Debugging

•  Quote from author:

If you write code with lots of bugs in it, you will ship code with lots of
bugs in it.

•  What does this say about testing and debugging?
–  Why are these hard in general?
–  Why are they even harder in embedded systems?

•  How tolerant is the world of software bugs, in general?
–  Do consumers expect embedded systems to be more reliable?

425 F19 8:36 ©J Archibald

Avoiding software bugs

•  The best approach would be to produce bug-free code, but virtually
all software has errors

•  Developers are foolish if they don’t do a lot of testing, but it cannot
be their primary technique for ensuring software quality

•  Unfortunately, embedded systems pose special challenges for testing

7

425 F19 8:37 ©J Archibald

Problems testing embedded software

•  Target hardware may not be available or stable early on while code is being
written and debugged

•  Difficult to generate all pathological timing scenarios
–  Impossible to test all combinations, and difficult to know which combinations

could cause a problem

•  Some bugs can be virtually impossible to reproduce
–  Caused by specific event sequence and timing

–  Very hard to generate using standard software test suites

•  Embedded systems generally lack detailed logging capabilities to identify
cause of failures

425 F19 8:38 ©J Archibald

Testing

•  Conclusion: can’t rely on extensive testing on target system
–  You’ll inevitably do some, but it can’t be your main plan of attack

–  What else can you do?

•  How about testing on the host?
–  Debugging and testing is more convenient, but full code won’t run

–  Timing is altered, so not much help with race-condition/shared-data bugs

–  Still, more useful than one might think

•  Let’s consider two ways to test embedded software on the host system

425 F19 8:39 ©J Archibald

•  In design phase, separate the application
code into hardware dependent code (HD)
and hardware independent code (HI)

•  Essential: creation of a clean interface
between HD and HI

•  HI is just C code – easy to compile and run
on other computers

•  HD portion is more problematic

Testing on the host: method 1

Hardware-independent
code

Hardware-dependent
code

Target system

Hardware

HI

HD

425 F19 8:40 ©J Archibald

Hardware dependent code

•  It is clearly not portable, yet it is crucial to system operation:
–  It interfaces to sensors: all system events and interrupts that cause HI

code to run come through HD code
–  It interfaces to actuators: all externally observable actions taken by HI

code go through device drivers in the HD code

•  Conclusion: system won’t actually do anything meaningful without
the HD code
–  So how could we test the HI code on the host?

425 F19 8:41 ©J Archibald

Solution: construct test scaffold code with same entry points (API) as
HD portion of code

Scaffold code triggers actions in HI code; it also responds to actions by
writing log files, and mimicking hardware actions at a high level,
“faking” the behavior of the hardware subsystems

This approach does not require a detailed, low-level hardware simulator

Hardware-independent
code

Test scaffold code

Host system

Keyboard Display Disk

Hardware-independent
code

Hardware-dependent
code

Target system

Hardware

425 F19 8:42 ©J Archibald

Testing the system

•  ISRs and interrupt handlers must also be divided into HD, HI parts
–  Required organization: HD code must call the HI part

–  Scaffold code will mimic HD actions, calling HI code to test its response

–  This can be more effective and thorough than testing HI code on target

•  Consider challenge of generating tick interrupts

–  Clearly responsibility of test scaffold code, but how to implement?

•  Generate automatically at fixed time intervals?

•  Generate directly and explicitly?

–  The latter is preferred: more likely to turn up errors with unusual combinations of
events occurring within same tick interval

8

425 F19 8:43 ©J Archibald

Testing the system
•  Important to use a scripting mechanism for convenience

–  Scaffold code reads script file that tells it what events to generate

–  General form: take this action (call this HI function) with these parameters at this time
–  Challenge: events are platform specific, so custom script “language” is needed

•  Good news: it is not difficult to create simple parser that reads files and generates
specified function calls

–  Even simple tools can be very effective
–  Well worth the effort to consider testing in design phase, and to build tools that make

testing easier

•  For ease of use, scaffold code can output results interleaved with script input
–  Makes it easy to follow actions and confirm correct operation

425 F19 8:44 ©J Archibald

Frame arrives (beacon with no element)
Dst Src Ctrl Typ Stn Timestamp
mr/56 ab 01234566789ab 30 00 6a6a

Backoff timeout expires
(Software should send association frame)
kt0

Timeout expires again
(Association process should fail)
kt0

Some time passes ---
(Software should retry sending the association frame)
kn2
kn2

Another beacon frame arrives
Dst Src Ctrl Typ Stn Timestamp
mr/56 ab 01234566789ab 30 00 6a6a

More time passes
(Should NOT send another association until
backoff time expires)
kn1

Backoff timeout expires
#(System should send association frame)
kt0
.
.
.

Script file example
•  For cordless bar-code scanner

•  Each command causes scaffold code to
call an interrupt routine

•  kt0: call timer interrupt routine

•  kn: calls another timer routine a
specified number of times

•  mr: writes data into memory (as if
received via radio) and calls radio
interrupt routine

425 F19 8:45 ©J Archibald

Sample output
from script

How useful
would this

mechanism be?

Output from scaffold
code shown in red

Frame arrives (beacon with no element)
Dst Src Ctrl Typ Stn Timestamp
mr/56 ab 01234566789ab 30 00 6a6a

Backoff timeout expires
(Software should send association frame)
kt0
-->SENDING FRAME: ab ff 01 23 45 67 89 ab 50 09 30 09 01 02 05 03

Timeout expires again
(Association process should fail)
kt0

Some time passes ---
(Software should retry sending the association frame)
kn2
kn2
-->SENDING FRAME: ab ff 01 23 45 67 89 ab 50 09 30 09 01 02 05 03

Another beacon frame arrives
Dst Src Ctrl Typ Stn Timestamp
mr/56 ab 01234566789ab 30 00 6a6a

More time passes
(Should NOT send another association until
backoff time expires)
kn1

Backoff timeout expires
#(System should send association frame)
kt0
-->SENDING FRAME: ab ff 01 23 45 67 89 ab 50 09 30 09 01 02 05 03

.
.
.

425 F19 8:46 ©J Archibald

Possible objections

•  “Too much of software is hardware dependent”
–  Actually most software is hardware independent and can be tested in this way

(See next slide)

•  “Scaffold software is too much work to create”
–  It is actually quite simple – it just reads a script and calls specified HI

functions; it adds output when its functions are called from HI code

•  “You’d need a version of RTOS running on host”
–  Most vendors happily supply this

425 F19 8:47 ©J Archibald

Fraction of “Telegraph” code
that is hardware-dependent

Get frames from
the network.

Write frames to
the network.

Analyze LLAP
frames.

Analyze NBP
frames.

Analyze DDP
frames. Analyze ADSP

frames.
Finish ADSP
connections. Keep queue of

print jobs.
Establish ADSP

connections.

Acknowledge
ADSP data.

Keep track of
printer status.

Keep queue of
outgoing bytes.

Write bytes to
the serial port.

Get bytes from
the serial port.

Keep queue of
incoming bytes.

Build outgoing
ADSP frames.

Set hardware
timer.

Track NDP
timeouts.

Track ADSP
timeouts.

Build outgoing
NBP frames.

Add DDP
header to frames.

Add LLAP
header to frames.

Respond to
LLAP frames.

Hardware-dependent
block

Hardware-independent
block

5 blocks

18 blocks

HI

HD

425 F19 8:48 ©J Archibald

Limitations of testing on host

•  Some things cannot be tested, including
–  Software/hardware interaction

–  Response time and throughput

–  Shared data problems and timing pathologies

–  Portability problems (endianness, packed data-structures, etc.)

•  But it makes sense to test as much as you can on the host before testing
on the target, since that is more difficult

9

425 F19 8:49 ©J Archibald

Testing on the host: method 2

•  Use an instruction set simulator that runs on host
•  Uses actual binary image that will run on the target, as constructed by

cross-compiler and linker/locator
–  Avoids portability problems with word-size, endianness, etc.
–  Tests both assembly and C code

•  What capabilities must the simulator have to be useful?

425 F19 8:50 ©J Archibald

Simulator requirements
•  Must simulate all assembly instructions of target CPU
•  Must simulate all built in peripherals at some level

–  Timers, DMA, I/O devices, etc.

•  Must model RAM and ROM at proper addresses
•  Should provide a debugger interface:

–  Set breakpoints
–  Examine/change memory
–  Single step execution

•  Should track timing in terms of instructions or bus cycles
–  Can give accurate measurements of the run time of various routines
–  Can give some insight into throughput and response time

How does our 425 simulator compare?

425 F19 8:51 ©J Archibald

Limitations of this approach
•  Unlikely that you can simply buy the simulator you want

–  Commercial simulator will know nothing about your custom hardware

–  May be possible to add desired functionality yourself, but vendors don’t
generally make their source code available

•  Simulator is unlikely to reveal obscure shared-data bugs
–  You are unlikely to do exhaustive testing to turn up all problems

•  Tough to use scripting because simulators don’t usually give access to
host’s keyboard, screen, and file system

–  425 simulator is unusual in this regard – by design

•  Recommendation: use simulator to test what cannot be tested using
scaffold approach:

–  Startup code, ISRs, etc.

425 F19 8:52 ©J Archibald

Section 10.3: assert macros
•  Low cost technique that catches lots of bugs
•  Sprinkle “assert” macro calls throughout code:

 assert (pFrame != NULL);
 assert (byMacAddrFrom <= ADDR_MAX);
 assert (pframe->byMode & MAX_MODE_USE_STATION);
 ...

•  Makes explicit assumptions about machine state (global variable or parameter
values)

•  If condition is true, nothing happens. If false, output is generated, generally
halting execution. Example:

Assertion failed: ptr != 0, file foo.c, line 27 Abort (coredump)

•  Implemented as macros so they can be turned off (#undef debug) and thus
generate no code in shipped product

425 F19 8:53 ©J Archibald

Example definition
(in assert.h)

#ifdef NDEBUG
 #define assert(bool_expression) /* define as nothing */
#else
 #define assert(bool_expression) \
 if (bool_expression) \
 ; \
 else \
 bad_assertion(__FILE__, __LINE__, #bool_expression);
#endif

425 F19 8:54 ©J Archibald

Benefits of assertions

•  Errors are caught much sooner, bringing the failure point closer to the error itself

•  Quote from article in Linux magazine:

“Enthusiastic use of assert() can turn a three-day debug fest into a three minute bug
fix. Practice the lazy developer mantra: An assertion failed is an hour saved.”

•  Usually requires just #include <assert.h> and calls to assert()

–  Make a practice of using in all your code, not just embedded applications

–  Mere presence of assertions helps document operational details and assumptions

•  One common use: inspect function parameters

10

425 F19 8:55 ©J Archibald

Assertions in embedded systems
•  Particularly useful in development and when testing on host
•  Harder to use on target system: typically has no screen to write “bad_assertion”

message to
•  Things you could do when assertion fails:

–  Make machine enter some easily detected state. Examples:
•  Turn off interrupts, spin in loop
•  Turn on special pattern of LEDs

–  Write one or more special error codes to a specific memory location
•  Values could then be determined with a logic analyzer

–  Cause emulator or target debugger to stop execution somehow
•  Could execute an illegal instruction, for example

425 F19 8:56 ©J Archibald

Section 10.4: Using other tools

•  Quote from text:

“No book can do true justice to the experience of tracking down some subtle,
inconsistent bug that only happens once every several hours and then only
when your back is turned.”

•  You can probably relate, but worse on “real” projects due to limited
visibility into target system

•  What do you do? Bring in the heavy-duty tools
–  Volt meters, ohm meters, oscilloscopes, logic analyzers
–  Not part of typical programmers tool set!
–  What can each of these do for you and what are their limitations?

425 F19 8:57 ©J Archibald

Volt meters, ohm meters, multi-meters

•  Is the hardware working?
–  Do all chips in the circuit have power?
–  Is there a broken lead?
–  Is the wiring possibly incorrect?
–  Is a fuse blown?
–  Is everything connected that should be?
–  Is something connected that shouldn’t be?

425 F19 8:58 ©J Archibald

Oscilloscopes

•  Graphs voltage vs. time, potentially multiple signals
–  Can select trigger to start operation

•  Typical questions that can be answered:
–  Is anything running?
–  Is processor getting a decent clock input?
–  Is memory getting chip-enable signals?
–  Are output signals reasonable?
–  Is there a loading problem or a bus fight?

425 F19 8:59 ©J Archibald

Logic analyzers

•  Captures logical signals, stores in memory, graphs on screen
–  Can record many signals simultaneously – up to several hundred if you

have $ and patience!
•  Typical operation: trigger on symptom of problem, then look backward

through captured data to find cause
–  Triggering mechanism can be very complex

•  Timing mode: samples at fixed frequency
–  Captures data without reference to signals it records

•  State mode: captures based on events observed in system
–  Typical use: record what instructions executed, what addresses accessed

425 F19 8:60 ©J Archibald

In-circuit emulators
•  Hardware emulator that plugs into CPU socket, appears to target

system as regular microprocessor
–  Programmable, controlled by host

•  Functionality similar to desktop debugger:
–  Set breakpoints
–  Single-step
–  Dump register and memory contents

•  Often includes overlay memory that can be used instead of actual
memory in the target system
–  Overlays specify subset of memory, RAM or ROM
–  On memory accesses in specified ranges, emulator uses overlay

11

425 F19 8:61 ©J Archibald

Software-only monitor /
debugging kernel

•  Small debugging program in ROM on target system
–  Receives software over serial line, copies to RAM, and causes it to run
–  Provides debugging interface on host
–  Removed in final product

•  Typical functionality from interface on host:
–  Set breakpoints
–  Examine memory and registers

•  Typical methodology:
–  Compile code and download to target via monitor
–  Set breakpoints, run, and debug on target

•  Requires no hardware modifications other than connection to host
–  Limitations: timing changed, breakpoints problematic in real-time systems,

hardware breakpoint support required for code in flash
425 F19 8:62 ©J Archibald

Trends making testing more difficult

•  Pins on chips are getting closer
–  Harder to attach logic analyzers, oscilloscopes

•  ASICs, FPGAs are replacing many simpler parts
–  Much more internal state that can’t be observed externally

•  Microprocessors with on-chip caches
–  You can’t monitor accesses to internal cache

–  You can typically turn caches off, but this changes execution timing

–  Caches, pipelines complicate execution timing

