
1

425 F19 7:1 ©J Archibald

It has been said that democracy is the worst form of government except all
those other forms that have been tried from time to time.
 Winston Churchill, on the floor of Parliament, November 1947

425 F19 7:2 ©J Archibald

A man without a vote is a man without protection.
 Commonly attributed to President Lyndon Johnson

425 F19 7:3 ©J Archibald

Voting

•  Accurate voting systems are critical
in every nation that holds open
elections

•  Let’s explore a little history

425 F19 7:4 ©J Archibald

As long as I get to count the votes,
what are you going to do about it?

William Magear (“Boss”) Tweed

425 F19 7:5 ©J Archibald

Boss Tweed
•  Tweed was elected to the

–  U.S. House of Representatives in 1852
–  New York County Board of Supervisors in 1858
–  New York State Senate in 1867

•  His political influence came from
–  being an appointed member of many boards and commissions
–  his control over political patronage in New York City through Tammany

Hall (the Democratic Party political machine)
–  his ability to ensure the loyalty of voters through jobs he could create and

control on city-related projects
•  He was convicted in 1877 of stealing ~$200 million from taxpayers
•  He died in jail in 1878

425 F19 7:6 ©J Archibald

It's hard not to admire the skill behind Tweed's system... The Tweed ring
at its height was an engineering marvel, strong and solid, strategically
deployed to control key power points: the courts, the legislature, the
treasury and the ballot box. Its frauds had a grandeur of scale and an
elegance of structure: money-laundering, profit sharing and organization.

Kenneth D. Ackerman, Tweed biographer

2

425 F19 7:7 ©J Archibald

Voting machines: some history
•  The U.S. has more contests per ballot than any other country
•  Challenge of hand-counting ballots motivated development of machinery

to count votes
•  First patent for machine useful in general election in U.S. issued in 1881

–  Array of buttons, one row per office, one column per party
–  Interlocks prevented voting for more than one candidate per race
–  Door interlock reset the machine as each voter left the booth

•  Challenges with that technology:
–  Poll workers (volunteers) could not verify correct operation of machine
–  Trickery could affect outcome: gears shaved, levers bent slightly, etc.

425 F19 7:8 ©J Archibald

425 F19 7:9 ©J Archibald

Background, cont.

•  2000 election (Bush v. Gore) pointed out problems with election systems
–  Outcome came down to Florida – no clear winner on election night
–  Race was so close that state law required a recount
–  Many legal battles followed: how to count non-clear cut cases
–  Votes were cast on punch cards; some had hanging chads, others had an

indentation but no hole
–  After one month, U.S. Supreme Court stopped the recount
–  Bush was declared the winner by 537 votes (a margin of 0.009%)
–  Conclusion of many: should move from punch-cards to all-digital systems
–  Subsequent years saw increased use of DREs (direct-recording electronic

voting machines)
–  DREs introduced plenty of new problems...

425 F19 7:10 ©J Archibald

Problems with DREs: 1

•  2000, New Jersey:
–  A DRE was taken out of service after a total of 65 votes were cast
–  After election, it was determined that none of the 65 votes was recorded for

either the Republican or the Democratic candidate for one office, but 27
votes each were recorded for their running mates

–  Company representative said no votes were lost: all of those 65 voters
simply failed to vote for the top two candidates

–  No way to know for sure

425 F19 7:11 ©J Archibald

Problems with DREs: 2

•  2002, Florida:
–  Runoff election decided by 5 votes
–  78 ballots had no vote recorded
–  Election supervisor claimed that those 78 people simply didn’t cast a vote –

despite the fact that it was the only contest on the ballot!
–  There was simply no way to know for sure

425 F19 7:12 ©J Archibald

Problems with DREs: 3

•  2006, Florida:
–  The winning margin in the 13th congressional district was just 369 votes
–  But more than 18,000 ballots from Sarasota county had no vote in the race
–  There was simply no way to know the intents and actions of those voters

3

425 F19 7:13 ©J Archibald

Problems with DREs: 4
•  2008, California:

–  Voting system lost about 200 completed
ballots in Humboldt County

–  Investigation by CA Secretary of State
showed that the GUI for Diebold’s vote
tabulation system had a button allowing
operator to delete audit logs

–  Button was located next to “print” and
“save as” buttons

–  But audit logs are required by federal
voting system guidelines!

–  System developer warned Diebold in
2001 email against adding clear button,
but company ignored those concerns

425 F19 7:14 ©J Archibald

Problems with DREs: 4 (cont.)

•  2008, California:
–  Problem #2 discovered in investigation: older version of software dropped

all votes in the first deck of ballots run through the system
–  Company knew about problem #2, but simply instructed officials to begin

elections by creating and deleting an empty “deck zero”

425 F19 7:15 ©J Archibald

Halloween 2003
425 F19 7:16 ©J Archibald

October 29, 2006

425 F19 7:17 ©J Archibald

Nisley article: April 2001

•  Simple to build a voting machine that records punched holes, right?
–  What if they aren’t punched exactly right?
–  Is such a vote invalid, or can someone determine what voter intended?

•  There is much more to voting than tabulating punched cards; there is an entire
system to consider, including political implications

–  Results combined with others in hierarchy reaching state, national levels
–  Accuracy depends on every step along the way
–  Any errors in transmitting or recording can fatally corrupt the results

•  Checks and balances are vital if people are to have trust in the system
–  Current practice: members of major parties allowed to examine all voting materials,

inspect voting machines, certify that votes are accurately counted and reported
–  Intent: reduce fraud, while preserving privacy and anonymity of each vote

Source: “Embedded elections”, Ed Nisley, Dr. Dobb’s Journal, April 2001
(Written shortly after the hanging chad fiasco of the 2000 election.) 425 F19 7:18 ©J Archibald

Embedded elections

•  As process changes with technology, can observation still take place?
–  Can we maintain the critical checks and balances?

•  Consider mechanical voting machines:
–  Levers on front, mechanical counters on back, interconnected by rods
–  Powered by same handle that closes privacy curtain
–  Inspectors verify that dials read 0 at start, then simply record totals at end

•  How might one affect final tally on such a machine?
–  Gears can be shaved to skip counts, levers slightly bent, etc.
–  Election inspectors are volunteers, not engineers or forensic experts
–  The machines are not torn down for a complete check before election
–  Inspectors can only verify that machine seems to be working

Nisley, cont.

4

425 F19 7:19 ©J Archibald

Embedded elections, cont.

•  If mechanical machines are bad, all-electronic machines are worse
–  Called “Direct-Recording Electronic Voting Machines” in the jargon
–  There is nothing to inspect, no way to verify their correct operation

Self-test routines can be faked, checksums made up, and any desired validation results
processed on the fly. And there’s no possibility of a recount independent of the machine, simply
because the votes exist only as insubstantial electronic blips stored within the machine.

Opportunities for trickery don’t end with the voting machine and, I fear, provide the most
opportunity for clandestine manipulation. Because the voting results become progressively
more concentrated as they go from precinct to county to state to nation, it should become more
difficult to gain access to the computers doing the tallying, the software in those machines
should be more open to inspection, and the process should have some verification and cross-
checking.

Nothing, it seems, could be further from the truth.

Nisley, cont.

425 F19 7:20 ©J Archibald

Embedded elections, cont.
•  Suppose a new all-electronic voting system is being designed

–  Consider the challenge of getting specs up front
–  Arcane local laws create constraints that must all be considered
–  Suppose outcome is unlikely but possible – how can you demonstrate that machines

are functioning correctly?
•  Options:

–  Record every vote?
•  Must be anonymous: can’t store name, ID, or even store them in sequence

–  Emit a ticket or receipt for voter?
•  Prohibited in some jurisdictions – so voters can’t be paid for their votes

•  Engineers usually wrestle with physical laws in their designs
–  This field involves “tangled legalisms and the potential for outright fraud”

Nisley, cont.

425 F19 7:21 ©J Archibald

Embedded elections, cont.

•  But, wait! There’s more!
–  Some 20 year old mechanical voting machines still work just fine
–  What are the chances that any electronic machine designed today will still be

operational 20 years from now?
–  Think about trying to make 20-year-old computers work today

•  And what about the digital vandals that write worms, viruses?
–  Rare in embedded world – not much payback for disabling a few elevators
–  Suppose the US established a single standard for voting machines; would the target

then be enticing to some?
–  There are plenty of groups who would want to influence a US presidential election;

some have immense resources
•  What about access and opportunity?

–  Voting machines locked up when not in use; under control of local officials
–  Are local officials ever convicted on charges of corruption?

Nisley, cont.

425 F19 7:22 ©J Archibald

Embedded elections, cont.
•  “The system designers will simplify the method of the crime, too”

–  Features: downloadable updates, revisable features, and online maintenance
–  Probably web-enabled too
–  Possible hardware security holes:

•  JTAG connector, ROM socket, flash memory, serial port

It should be obvious that displaying one value on an LCD, printing a second on paper,
transmitting a third to the central tally, and creating an audit trail with a fourth isn’t all that
difficult. You cannot verify data using the same circuitry that stores it, digital signatures
notwithstanding! If an attacker can replace the program, all things are possible and all
checks will balance.

Assume that an attacker has four or eight or twelve years, an unlimited budget, world-
class experts on call, sample systems to experiment with, and all the documentation and
source code. Think they can pull off an attack? Well, do unfunded groups with low
resources bring down nominally high-security systems even today?

Nisley, cont.

425 F19 7:23 ©J Archibald

Embedded elections, cont.
Even better, nobody will ever know. The attackers need not force a win by 100.0

percent of the vote. Just a few points one way or the other, not a landslide, and no one
will ever be the wiser. Those printed audit records (or whatever safeguards you design
into your voting machine) will never be consulted, as there won’t be any reason to verify
the “obviously correct” results.

Or maybe everybody will know. Suppose every single voting machine in the US
crashes at high noon on election day? Or the Webbish vote collection system seizes up
under a Denial of Service attack? Or the final tally shows Mickey Mouse as the clear
winner?

Need I go on?
Remember, the attackers have an unlimited budget, unlimited expertise, all the source

code, complete physical access for years, and may choose any of several desirable (to
them) outcomes. Tell me how you’d secure those systems, all the way from the voter’s
fingertips to the national media.

I don’t believe those safeguards will work, not one little bit. Be very afraid.

Nisley, cont.

425 F19 7:24 ©J Archibald

A 2016 interview with Douglas Jones

•  CS professor at Univ. of Iowa, researcher in voting technology
•  Selected points:

–  DREs still based on 1990s designs, but GUIs improved, paper-trail mechanisms added
–  Optical mark scanners are more popular – capture full images of each ballot
–  EMS (election management system) probably a bigger issue than voting machines
–  Many jurisdictions do not take precautions or compare results with paper records
–  Open-source software model probably not best fit: disclosed source mode better
–  So far, problems not solved by independent testing organizations
–  Election officials have a strong incentive not to report problems
–  Federal government has little say in ballot layout, but it frequently causes problems
–  Still work to be done to support absolute ballot secrecy
–  Some jurisdictions require at least one board member with technical expertise

“Douglas Jones on Today’s Voting Machines”, Hal Berghel, Computer, Oct. 2016

5

425 F19 7:25 ©J Archibald

Jones

•  Will internet voting solve our problems?

 Coming up with “best practices for internet voting” is like coming

up with “best practices for drunk driving.” You really don’t want
to go there.

425 F19 7:26 ©J Archibald

Epstein: A voting machine’s demise

•  Case study of voting machine that was still in use in 2014
•  Selected points:

–  Based on Windows XP Embedded, used Wi-Fi to configure machines, summarize results
–  No OS patches installed since 2004
–  Used WEP wireless encryption scheme, despite being declared obsolete in 2004
–  WEP key hardwired to “abcde”
–  Windows administrator password set to “admin” – no interface provided to change it
–  Database encrypted using weak scheme with hardwired key
–  No logs or cryptographic checksums

“Weakness in Depth: A Voting Machine’s Demise”, Jeremy Epstein, IEEE Security & Privacy, May/June 2015

This collection of security flaws is so severe that if an election was held using the
AVS WinVote, and it wasn’t hacked, it was only because no one tried.

425 F19 7:27 ©J Archibald

Were problems fixed in 2018?

•  Associate Press:
–  Political activist Leah

McElrath voted early in Texas
on Oct. 22, 2018

–  She reviewed her electronic
ballot, saw this on her screen
and took a photo

–  Despite her straight party vote
(for Democrats), the machine
reported a vote for Republican
Ted Cruz

425 F19 7:28 ©J Archibald

•  Consider Scantegrity, an open source, optical scan system developed by
researchers from MIT and elsewhere; impetus was NSF-sponsored competition

•  Used since 2009
–  Individual voters can verify that their ballots got counted
–  Anyone can independently audit the results

•  Voters make selections on paper ballot using special pens
–  Ink in pen reacts with ink in oval, turning it black and revealing unique

three-letter code
–  Voters record unique ballot serial number and three-letter code
–  Codes are generated cryptographically and are different on every ballot

•  After polls close, voters can go to the election office website, type in serial
number and see a rendition of a ballot, showing the codes for their votes

–  Voters can verify that their ballots were included in the final tally
–  Designers claim problems can be identified if just 3 to 5 percent of voters

verify their votes

Can better technology help?

425 F19 7:29 ©J Archibald

Discussion

•  What are consequences if citizens do not believe in election outcome?

•  Is there evidence that other actors want to undermine confidence in US
elections?

•  Can technology ever result in perfectly secure systems?

•  Are problems solved if we
–  vote by mail?
–  vote using the Internet?
–  build a system on top of the Internet of Things?

425 F19 7:30 ©J Archibald

Chapter 8: Design principles

•  You’ve experienced some of the challenges of creating concurrent software

•  Chapter 8 focuses on design principles for RTOS application code
•  You would be wise to apply these principles in Lab 8
•  Principles are not hard and fast rules; sometimes you have to break them to get

your system to work
•  What then is purpose of “rules”?

–  They serve as a useful guide
–  Violations draw attention to potentially dangerous aspects of a design
–  They may help designers discover safer alternatives

6

425 F19 7:31 ©J Archibald

Challenges of real-time code

•  How does 425 software differ from other code you’ve written?
•  Why would specification for real-time software be more difficult than for other

software?
–  The actions of the system must be specified (e.g., input X produces output Y)

–  The response time of each action must be specified

–  The criticality of each deadline must be specified
•  What are the consequences if that deadline is missed?

425 F19 7:32 ©J Archibald

Example: timing issues

Suppose system has 9600 bits/sec data connection
•  Do you get an interrupt for arrival of each byte, or is DMA used?

–  If no DMA, processor may be interrupted ~1200 times per second

•  Can your processor handle that many interrupts each second?
–  What is the overhead of the ISR each time through?
–  What fraction of total CPU time will be spent servicing the interrupts?
–  Is enough CPU time left over to do other critical processing?

What information do you need to answer these questions?

425 F19 7:33 ©J Archibald

Things you need to know

•  Execution time of each ISR, task, RTOS function in system
–  Each measured value is a function of

•  Efficiency of application code
•  Algorithms and data structures used
•  Compiler efficiency
•  CPU clock frequency
•  Hardware setup

•  Predicted worst-case event frequency, arrival rate of incoming data, etc.
–  Anything that triggers an interrupt

•  Hard to determine all of this without building a system and studying it
–  Mockups, prototypes, and proof-of-concept implementations are common

425 F19 7:34 ©J Archibald

Observation

•  For real-time system developers, the deck is stacked against you:
–  Popular programming languages have no notion of time
–  Compiler can dramatically affect execution timing
–  Operating system scheduling and overhead can be critical
–  Communication over network will have unpredictable timing
–  Hardware features can change timing from run to run

•  Examples: caches, prefetching, pipelining, branch prediction

•  Problem:
–  How can we build software that meets strict timing guarantees when the

platform and tools offer so little help?

425 F19 7:35 ©J Archibald

Lee’s radical solution

Thesis: CS must rethink its core abstractions to embrace time
•  Most processors are embedded, interacting with physical processes

–  Cyber-physical systems are also networked and intelligent
–  Challenging to support video stream, or to run tight control loop

•  Computing has focused on transforming data, not physical dynamics
–  Passage of time almost completely missing
–  Hard to build on these foundations and get precise timing control
–  Goal not to make computers faster: problem is variability and unpredictability

•  We’ve reached a tipping point: a profound revolution is needed
–  Entire industrial sectors are producing cyber-physical systems
–  Computing is merging with the networking of physical systems
–  Existing computing foundations are insufficient and impeding progress

•  We need to change the foundation of computing

See “Computing needs time”, Edward Lee, CACM, May 2009

Prof. Edward A. Lee
Univ. of California at Berkeley

425 F19 7:36 ©J Archibald

Argument points
•  Time must be included from ground up to interact meaningfully with physical processes
•  Not enough to treat time as a resource and try to optimize it; it is a correctness problem
•  Time needs to be a semantic property, not a quality factor
•  In physical domain, functions transform events to events, not bits to bits
•  This is not a QoS problem: finishing earlier is not always a good thing
•  The physical world is never entirely predictable
•  All system components should be as predictable and repeatable as possible
•  Semaphores, locks and priorities are merely compensations for fundamental lack of

predictability and reliability in software
•  Digital circuits are an enormous asset: they are perfectly predictable and repeatable with

respect to timing and logical functionality

7

425 F19 7:37 ©J Archibald

Abstractions don’t help

•  Abstractions make complex systems possible, but in the current state of embedded
software, nearly every abstraction has failed

•  Programming language hides ISA, but we need to know timing details
•  RTOS hides critical program details that affect timing and can cause system failure

•  Network hides signaling details, but makes no timing guarantees

•  Timing ends up being an accident of implementation
–  Modern processors make worst-case execution time (WCET) virtually unknowable
–  Any change in hardware or software renders all previous analysis invalid

425 F19 7:38 ©J Archibald

The holy grail

Imagine a world where
•  Developers work with “precision timed” computers with repeatable timing

•  Temporal semantics has been added to programming languages

•  APIs for library routines and software components document run times

•  Formal methods (used to verify system design and behavior) have been
extended to include temporal dynamics

•  Operating systems are capable of handling both time-sensitive operations and
best-effort operations at the same time

•  Networks consider timing as a correctness property, rather than a quality of
service property

Lee’s research group at Berkeley is pursuing many of these

425 F19 7:39 ©J Archibald

Two management challenges

1.  How do you manage the development of bug-free real-time systems?
2.  How do you convince the customer that the system works as intended?

Let’s discuss these challenges

425 F19 7:40 ©J Archibald

Bug rates

•  Typical: ~60 errors per 1000 lines of code
–  Source: The Software Engineering Institute

•  Top notch: ~1 error per 1000 lines
–  Companies at Capability Maturity Model, Level 5 (highest).

•  Only ~20 organizations were certified at this level in 2002.

•  Off the charts: 1 error in 420,000 lines!
–  Lockheed-Martin’s space shuttle code
–  Error rate determined from extensive audits and testing
–  Three consecutive versions had a single error each
–  How did they do that?

 Aside: avg. bug rate in open source programs = 0.43 bugs per 1000 lines
–  Study funded by U.S. Dept. of Homeland Security (Published 2006)
–  40 popular programs: Linux kernel (.33), Apache (.25), LAMP stack (.29)
–  But Linux is dynamic: 846,233 lines of code added from 2.6.10 to 2.6.13, for example

425 F19 7:41 ©J Archibald

What was Lockheed-Martin’s secret?

•  Emphasis on very detailed and accurate specification before any coding
–  Can be excruciating for all involved, but it was essential to their success
–  Their specification focused on

•  Documentation
•  Implementation validation
•  Testing procedures

•  Other noteworthy points (at time shuttle code was written):
–  Each developer had private office, reducing interruptions
–  All developers went home at 5 PM

425 F19 7:42 ©J Archibald

Sorry to interrupt, but...

•  Programmer interruptions are very important
–  A controlled study found a 3:1 difference in performance because of

interruptions
–  Other studies show that it takes 15 minutes to enter a “state of flow”

where programmer is “one with the computer”
–  But studies also show that the typical developer is interrupted once

every 11 minutes!

•  What are consequences of this?
–  What about the cubicle farms in which most engineers work?

8

425 F19 7:43 ©J Archibald

Productivity

•  Study from Peopleware, DeMarco and Lister, Dorset House Publishing, 1987
•  Authors conducted extensive coding competitions for teams: how well they solved

standard set of software problems
•  Results:

–  Average of top quartile outperformed average of bottom quartile by ~3x!
–  Performance highly correlated with environment; little correlation with experience

 1st Quartile 4th Quartile
 Dedicated workspace 78 sq ft 46 sq ft
 Is it quiet? 57% yes 29% yes
 Is it private? 62% yes 19% yes
 Can you turn off phone? 52% yes 10% yes
 Can you divert calls? 76% yes 19% yes
 Frequent interruptions? 38% yes 76% yes

425 F19 7:44 ©J Archibald

Fun facts about cubicles

•  Dilbert cartoons refer to cubicles as “anti-productivity pods”
•  40M North Americans work in cubicles in 2019

•  In 1994, workers had 90 ft2 on average. This fell to 75 ft2 by 2010.

•  Cubicles block sunlight and result in poor ventilation; studies tie both to decreased
productivity and to an increase in sick leave

•  People in cubicles with higher partitions work more slowly

•  Robert Propst was credited with invented the cubicle, but before his death (2000)
he railed against them, calling them “monolithic insanity”

•  Intel recently decided to rethink its offices when it was determined that 60% of
cubicles were empty most of the time

•  The trend is to open-plan areas, with fewer desks than people

425 F19 7:45 ©J Archibald 425 F19 7:46 ©J Archibald

Surviving cubicles

•  Recommendations to minimize negative impact
–  Wear headphones, use music to drown out noise
–  Turn the phone off
–  Know and use your most productive hours
–  Disable the email
–  Put a curtain across the opening (some even buy a door!)
–  One website shows how to make a fake window
–  Customize the space: wallpaper, rug, chandelier...

425 F19 7:47 ©J Archibald

Motivation challenge

•  How does typical engineer or programmer feel about spending a lot of
time doing the tasks below?
–  Specification
–  Documentation
–  Development
–  Testing

•  Let’s turn to perhaps the highest technical authority in the land for
some insight...

425 F19 7:48 ©J Archibald

9

425 F19 7:49 ©J Archibald 425 F19 7:50 ©J Archibald

425 F19 7:51 ©J Archibald 425 F19 7:52 ©J Archibald

What is ISO 9000?

•  A worldwide standard for quality control and improvement
–  Generic; not specific to software development

•  Certification under the ISO standard requires:
–  An outside audit or review
–  A detailed paper trail covering many steps in the development cycle

•  Next slide summarizes just the major aspects

425 F19 7:53 ©J Archibald

Major aspects of ISO 9000 review

1.  Management responsibility
2.  Quality system
3.  Contract review
4.  Design control
5.  Document and data control
6.  Purchasing/control of customer-

supplied product.
7.  Product identification and traceability
8.  Process control
9.  Inspection and testing
10.  Control of inspection, measuring, test

equipment

11.  Inspection and test status
12.  Control of nonconforming product
13.  Corrective and preventive action
14.  Handling, storage, packaging,

preservation, and delivery
15.  Control of quality records
16.  Internal quality audits
17.  Training
18.  Servicing
19.  Statistical techniques

425 F19 7:54 ©J Archibald

Usefulness of ISO 9000

•  Dilbert cartoons reflect how it is viewed by engineers and developers:
–  A major imposition that keeps them from their “real work”

•  However, something similar is essential for large projects to be successful
–  Companies like Lockheed-Martin have shown that this approach can play a

significant role in their success
–  Their employees “bought-in” to the process

•  Some companies just go through the motions without commitment
–  They are wasting their time and deceiving their customers and investors

10

425 F19 7:55 ©J Archibald

Capability Maturity Model
•  Origin:

–  In early 1980s, US DoD became exasperated with delays and cost
overruns in software projects by its contractors

–  Helped create the Software Engineering Institute to study ways to help the
software industry grow responsibly

–  In 1987, SEI established the software capability evaluation (SCE)
•  A formal way to determine the maturity of an organization’s software

development process
•  A general measure of software development competence

–  CMM, introduced in 1991, ranks a potential contractor’s software maturity
from Level 1 to Level 5

425 F19 7:56 ©J Archibald

Capability Maturity Model
•  How it is used:

–  DoD releases RFP (request for proposal) for a project to be completed
•  RFP describes work to be done, contract terms, and minimum CMM ranking

–  Candidate must have undergone SCE, including site visit
•  Interviews of personnel, reviews of practices, observations of work environment

•  Problems:
–  Different groups used different evaluation methodologies
–  Evaluation teams were staffed unevenly; some lacked experience
–  A thorough review is expensive (typical: tens of thousands of dollars)
–  Review completed in one week; tough to thoroughly address everything
–  Contractors learned to appear better than they really were

425 F19 7:57 ©J Archibald

•  January 2005: almost 2000 government and commercial organizations
voluntarily reported CMM levels

–  Level 1: Initial
•  No organized quality activities

–  Level 2: Repeatable
•  Short term motivational efforts

–  Level 3: Defined
•  Implementing 14 step program

–  Level 4: Quantitatively managed
•  Continuing 14 step program

–  Level 5: Optimizing
•  Quality improvement essential part of system

•  Note that this is a self-selective group!
–  Companies with worst practices unlikely to subject themselves to a CMM evaluation

CMM levels

53 %

30 %

17 %

See Charette, Spectrum, Sept. 2005 (“Zen” labels from QMMG maturity matrix)

Enlightenment

Uncertainty

Awakening

Wisdom

Certainty

425 F19 7:58 ©J Archibald

Customer confidence
•  Certainly customers care about the quality of the product
•  Since complex, embedded real-time systems are difficult to

exhaustively test, the development process says a lot
–  Since customers cannot test the entire system, they have to believe that the

design, development, and internal testing were thorough

–  Truly an exercise of faith!
–  Company’s track-record on other projects is a key indicator

•  Knowing that the development process was subject to rigorous internal
scrutiny at every step helps to build customer confidence

425 F19 7:59 ©J Archibald

Case study: how not to do design
•  The Therac-25, a medical linear accelerator; generated high-energy beams to

destroy tumors with minimal impact on surrounding tissue

Source: Leveson and Turner article, IEEE Computer, July 1993 425 F19 7:60 ©J Archibald

Corporate history

•  Therac-25 was the product of a joint venture between Atomic Energy
of Canada Limited (AECL) and CGR, a French company

•  Earlier products from this joint venture:
–  Therac-6: a 6 million electron volt (MeV) accelerator for X-rays
–  Therac-20: a 20 MeV dual mode (X rays or electrons) accelerator
–  Characteristics of these machines:

•  Both based on older CGR machines, augmented with computerized control
running on a DEC PDP-11 minicomputer

•  Both had limited software functionality: computer control merely added
convenience in operating stand-alone hardware

•  Both included industry-standard safety features and hardware interlocks

11

425 F19 7:61 ©J Archibald

Innovations in the Therac-25
•  Dual mode operation (electrons and X-ray)

–  Could deliver electrons from 5 to 25 MeV, for shallow tissue
–  Could deliver photons at 25 MeV for X-ray therapy, deeper tissue
–  Turntable rotated appropriate equipment into the beam path

•  For electron mode, scanning magnets spread beam for safety.
•  For photon mode, beam flattener produced uniform field

•  Much more compact than earlier products
–  Used a “double-pass” approach for electron acceleration

•  Exploited “depth dose” phenomenon:
–  The higher the energy, the deeper the dose buildup, sparing tissue above

target area
•  No redundant hardware interlocks; total reliance on software for

correct operation
Any red flags?

425 F19 7:62 ©J Archibald

Product timeline

•  1976: First hardwired prototype produced
•  Late 1982: Fully computerized version available
•  March 1983: AECL performed safety analysis
•  1983: First Therac-25 units were installed, operating

–  Ultimately reached total of 11: with 5 in US, 6 in Canada

•  Between June 1985 and January 1987:
–  Six known accidents involving massive overdoses that resulted in deaths

and serious injuries
–  Described as “the worst series of radiation accidents in the 35-year history

of medical accelerators”

425 F19 7:63 ©J Archibald

Software development
•  Controlling software written by a single person in PDP assembly language

over a period of several years. (Evolved from Therac-6 code started in 1972)
•  Very little documentation of software specifications or test plan was produced

during development
•  Manufacturer claimed that hardware and software were “tested and exercised

separately or together over many years”
•  Quality assurance manager later described two parts to testing:

–  “Small amount” of testing done on a simulator
–  Most testing done with integrated system

•  Same QA manager claimed 2,700 hours of testing; later clarified as meaning
“2,700 hours of use”

•  Programmer left firm in 1986; lawyers unable to obtain personal info
–  Fellow employees knew no details of his education or professional experience

425 F19 7:64 ©J Archibald

Software structure
•  Manufacturer: Therac-25 software had a “stand-alone, real-time

treatment operating system”
–  Proprietary, not a standard OS or kernel
–  Ran on PDP 11/23 (32KB RAM)
–  Preemptive scheduling

•  Main software components:
–  Shared global variables
–  Scheduler
–  Tasks: 3 “critical” and 7 “non-critical”
–  Interrupt service routines

•  Tasks accessed shared data with no real synchronization
–  No real enforcement of critical sections when reading and writing shared

variables
–  Resulting race conditions played important part in accidents

425 F19 7:65 ©J Archibald

AECL’s safety analysis
•  Took form of fault tree analysis (FTA)

–  Start with postulated hazard, create branch for each possible cause
–  Continue until each leaf is “basic event” with a probability that can be

quantified
•  Example: probability of “getting wrong energy” ≈ 10-11

–  Apparently AECL’s analysis focused exclusively on hardware

•  Assumptions made in their analysis:
Programming errors have been reduced by extensive testing on a hardware
simulator and under field conditions on teletherapy units. Any residual software
errors are not included in the analysis.

Program software does not degrade due to wear, fatigue, or reproduction process.

Computer execution errors are caused by faulty hardware components and by
“soft” random errors induced by alpha particles and electromagnetic noise.

425 F19 7:66 ©J Archibald

Accident history
3 June 1985: Marietta, Georgia
•  Therac-25 had been in operation for 6 months
•  61-year-old patient receiving 10-MeV electron treatment for lymph nodes
•  Details sketchy; patient complained immediately of being burned

–  Technician told her this was not possible
•  On-site physicist contacted AECL to ask if machine could operate in electron mode

without scanning magnets to spread the beam
–  Three days later engineers at AECL said this was not possible
–  AECL: we knew nothing about this incident until lawsuit was filed in 1986
–  No mechanism within AECL to follow up reports of suspected accidents

•  Later estimated that patient received 1-2 doses over 15,000 rads
–  Typical dose in 200-rad range

•  Eventually patient’s breast had to be removed because of radiation burns
–  She completely lost use of shoulder and arm, in constant pain

12

425 F19 7:67 ©J Archibald

Accident history
26 July 1985: Hamilton, Ontario
•  5 seconds into treatment, machine shut down with error message, but display

indicated “no dose”
–  Operator tried again with same result: machine shut down, “no dose” displayed
–  Cycle repeated five times: “standard operating procedure”
–  Not an unusual scenario according to experienced operators
–  Hospital service technician checked out machine, but found nothing wrong

•  Patient complained of burning sensation in treatment area in hip
–  Patient died in November of cancer; autopsy noted that total hip replacement would

have been required as a result of radiation overexposure
–  Technician later estimated that patient received 13,000 to 17,000 rads

•  AECL could not reproduce problem; switches on turntable were blamed
–  Turntable operation was modified, including software that read switches
–  Customers were told that “analysis of the hazard rate of the new solution indicates an

improvement over the old system by at least five orders of magnitude”
–  AECL later admitted that switch testing was “inconclusive”

425 F19 7:68 ©J Archibald

Accident history

December 1985, Yakima, Washington
•  After treatment, patient developed excessive reddening of the skin in a parallel

striped pattern on her right hip
–  Staff could not find explanation that made sense; could not reproduce hardware

arrangement with matching orientation of stripes
–  AECL was informed via letter and phone calls

•  Written response from AECL:
–  “After careful consideration, we are of the opinion that this damage could not have

been produced by any malfunction of the Therac-25 or by any operator error.”
–  Included two pages of technical reasons why an overdose was impossible
–  Stated that there had been “apparently no other instances of similar damage to this or

other patients”
•  Machine malfunction not acknowledged until later accidents understood

425 F19 7:69 ©J Archibald

Accident history

March 1986, Tyler, Texas
•  More details known because of diligence of hospital physicist
•  Experienced operator entered prescription data, noticed an error

–  She had typed ‘x’ (for X-ray) when ‘e’ (for electron) was intended
–  Used cursor-up key to edit the mode entry, then hit return several times to move to

bottom of screen

•  After message from computer that parameters had been verified, she began
treatment

•  Console displayed message “Malfunction 54”
–  Only on-site information (sheet on side of machine) indicated that this was a

“dose input 2” error; no other information available
–  Undocumented meaning: delivered dose was either too high or too low

•  Machine showed substantial underdose on dose monitor display

425 F19 7:70 ©J Archibald

Tyler accident, cont.
•  Operator repeated treatment, got same message

–  Operator was isolated from patient; machine in shielded room
–  Video monitor was unplugged, audio monitor was broken

•  Patient felt electric shock, burning as if hot coffee poured on his back
–  Not his first treatment, knew this was not normal
–  Started to get up to get help just as second treatment began
–  Felt shock in arm, as though his hand were leaving his body
–  Went to door and pounded on it to surprise of operator

•  Electrical shock assumed initially; the machine was shut down for testing
–  Full day of testing could not reproduce “Malfunction 54” message
–  AECL engineer maintained that overdose with machine was impossible
–  AECL told physicist: no prior accidents involving radiation overexposure
–  Independent engineers concluded that machine could not shock patient

•  Patient died five months later from complications of overdose
–  Estimated to have received 16,500 to 25,000 rads in small area

425 F19 7:71 ©J Archibald

Accident history
April 1986, Tyler, Texas (same facility, 1 month later)
•  Operator entered prescription data, noticed error

–  Used cursor-up key to change from X-ray to electron; continued with treatment
–  After a few seconds, machine shut down with loud noise (intercom was working)
–  Console displayed “Malfunction 54”
–  Operator rushed in, patient moaned for help, said he felt “fire” on side of his face
–  Operator got physicist immediately

•  Patient died three weeks later
–  Autopsy showed high-dose radiation injury to brain

•  Physicist worked at length with operator to reproduce error
–  Eventually produced error message at will, then tried to measure actual dosage
–  With his help, AECL was finally able to reproduce malfunction on their machine
–  AECL measured dosage at center of field at 25,000 rads
–  Critical factor: data entry speed during editing

425 F19 7:72 ©J Archibald

The bug
•  Task that handled data entry relied on separate

keyboard handler task to get input from operator
–  Communication between the tasks used “data entry

completion flag” to determine if prescription data
had been entered

–  Code structure, race conditions on flag allowed data
entry task to completely miss editing changes in
already entered data

–  Editing changes were displayed on operator screen
and internal variable was actually changed, but
machine control routine would use old value

–  Software did not perform consistency check

•  Fundamental problem was difficult to see; full
software was complex

Operator screen

13

425 F19 7:73 ©J Archibald

Quote from paper
Initially, the data-entry process forces the operator to enter the mode and energy,
except when the operator selects the photon mode, in which case the energy defaults
to 25 MeV. The operator can later edit the mode and energy separately. If the
keyboard handler sets the data-entry completion variables before the operator
changes the data in MEOS [a 2-byte mode/energy offset variable], Datent will not
detect the changes since it has already exited and will not be reentered again. The
upper collimator, on the other hand, is set to the position dictated by the low-order
byte by another concurrently running task and can therefore be inconsistent with the
parameters set in accordance with the information in the high-order byte of MEOS.
The software appears to include no checks to detect such an incompatibility.

The first thing that Datent does when it is entered is to check whether the mode/
energy has been set in MEOS. If so, it uses the high-order byte to index into a table
of preset operating parameters and places them in the digital-to-analog output table.
The contents of this output table are transferred to the digital-analog converter during
the next clock cycle. Once the parameters are all set, Datent calls the subroutine
Magnet, which sets the bending magnets.

425 F19 7:74 ©J Archibald

Quote cont.

Setting the bending magnets takes about 8 seconds. Magnet calls a
subroutine called Ptime to introduce a time delay. Since several magnets
need to be set, Ptime is entered and exited several times. A flag to indicate
that bending magnets are being set is initialized upon entry to the Magnet
subroutine and cleared at the end of Ptime. Furthermore, Ptime checks a
shared variable, set by the keyboard handler, that indicates the presence of
any editing requests. If there are any edits, Ptime clears the bending magnet
variable and exits to Magnet, which then exits to Datent. But the edit change
variable is checked by Ptime only if the bending magnet flag is set. Since
Ptime clears it during its first execution, any edits performed during each
succeeding pass through Ptime will not be recognized. Thus, an edit change
of the mode or energy, although reflected on the operator’s screen and the
mode/energy offset variable, will not be sensed by Datent so it can index the
appropriate calibration tables for the machine parameters.

425 F19 7:75 ©J Archibald

The response
•  AECL was required to define a corrective action plan (CAP) that would meet

with FDA approval. This required one year of iteration
–  More than 20 changes to software and hardware were proposed, plus modifications

to documentation and manuals
–  Not all changes were related to the specific bug responsible for Texas accidents

•  AECL also proposed temporary “fix” so users could continue clinical use
–  But letter describing fix (next slide) did not describe defect or potential hazards
–  Merely stated that cursor key was to be removed, editing process changed

•  Therac-25 users group formed in 1986; also began user newsletter
–  At first meeting, AECL representative promised a letter detailing CAP
–  Several users had added their own hardware safety features; labeled as “redundant”

by AECL
•  AECL claim about proposed CAP

–  Would improve “machine safety by many orders of magnitude and virtually
eliminate the possibility of lethal doses as delivered in the Tyler incident”

425 F19 7:76 ©J Archibald

AECL letter to Therac users
15 April 1986

SUBJECT: CHANGE IN OPERATING PROCEDURES FOR THE THERAC25 LINEAR
ACCELERATOR

 Effective immediately, and until further notice, the key used for moving the cursor back
through the prescription sequence (i.e., cursor “UP” inscribed with an upward pointing
arrow) must not be used for editing or for any other purpose.
 To avoid accidental use of this key, the key cap must be removed and the switch
contacts fixed in the open position with electrical tape or other insulating material. For
assistance with the latter you should contact your local AECL service representative.
 Disabling this key means that if any prescription data is incorrect then “R” reset
command must be used and the whole prescription reentered.
 For those users of the Multiport option, it also means that editing of dose rate, dose, and
time will not be possible between ports.

This is the complete letter!

425 F19 7:77 ©J Archibald

Another accident

January 1987, Yakima, Washington
•  Patient was to receive two “film-verification” exposures of 3-4 rads, then a 79-rad

photon treatment
–  After first two exposures, operator entered room, used hand control to rotate turn-table to

field-light to verify beam position on body, and left film by mistake
–  Treatment began, unit shut down after 5 seconds; operator repeated treatment

•  Operator heard patient on intercom, but couldn’t understand; she entered room
–  Patient complained of “burning sensation” in chest
–  Console displayed total exposure of just 7 rads

•  Patient developed skin burn in stripes matching slots in blocking tray
–  Investigators suspected that beam had come on with turntable in field-light position
–  Film evidence supported this, but error could not be reproduced
–  Patient died in April of complications from overdose; could have received 8,000 to

10,000 rads after two doses
425 F19 7:78 ©J Archibald

The Yakima bug

•  Different from bugs causing the Tyler accidents
•  After operator enters prescription data, the code loops waiting for precise

positioning of patient (using hand controls in treatment room)
–  Each pass through routine in loop increments a shared variable
–  Non-zero value indicates inconsistency; treatment should not proceed
–  Variable was one byte in size: increment overflowed every 256th pass

•  Accident happened when operator hit “set” at precise moment when the shared
variable rolled over to zero

–  Because of zero test, software skipped check of turntable position
–  Beam was activated at full 25MeV without target in place and without scanning

magnets; scattered and deflected only by stainless steel mirror in its path
–  AECL proposed fix: set variable to some fixed value instead of incrementing

•  FDA recommended that all Therac-25s be shut down until permanent
modifications could be made

14

425 F19 7:79 ©J Archibald

Response
•  From FDA (US Food and Drug Administration) investigator:

•  From AECL:
–  Internal tests (on CAP changes) had been done but not documented
–  Independent evaluation of software “might not be possible”
–  Claimed two outside experts had reviewed software, but could not provide

names
–  RAM limitations would not permit inclusion of audit option to produce hard-

copy audit trail
–  Source code would not be made available to users

It is impossible for CDRH [Center for Devices and Radiological Health] to find
all potential failure modes and conditions of the software… I am not convinced
that there are not other software glitches that could result in serious injury.

425 F19 7:80 ©J Archibald

Lessons learned

•  Making operator interface more user-friendly can conflict with safety
goals

•  Importance of fail-safe designs:

For complex interrupt-driven software, timing is of critical importance. In both
of these situations, operator action within very narrow time-frame windows was
necessary for the accidents to occur. It is unlikely that software testing will
discover all possible errors that involve operator intervention at precise time
frames during software operation… Therefore, one must provide for prevention
of catastrophic results of failures when they do occur. I, for one, will not be
surprised if other software errors appear with this or other equipment in the
future.
 E. Miller, director of Division of Standards Enforcement, CDRH, FDA

425 F19 7:81 ©J Archibald

Lessons learned

•  Danger of naive assumptions:

One of the serious mistakes that led to the multiple Therac-25 accidents was the
tendency to believe that the cause of an accident had been determined ... without
adequate evidence to come to this conclusion and without looking at all possible
contributing factors. Another mistake was the assumption that fixing a particular
error (eliminating the current software bug) would prevent future accidents.
There is always another software bug.

 Leveson and Turner

425 F19 7:82 ©J Archibald

Lessons learned
•  Beware of

–  overconfidence in software
–  removing standard hardware interlocks
–  tendency of engineers to ignore importance of software
–  systems without independent checks to verify correct operation
–  companies without incident audit trails and analysis procedures
–  projects without adequate documentation
–  complicated designs
–  systems without software audit trails
–  software systems that have not been tested extensively
–  naive assumptions that reusing software will be safe because it has been

exercised extensively

425 F19 7:83 ©J Archibald

Lessons learned
•  Potential problems are widespread:

•  Attitudes must change about software:

A significant amount of software for life-critical systems comes from small
firms, especially in the medical device industry; firms that fit the profile of
those resistant to or uninformed of the principles of either system safety or
software engineering.

 Frank Houston, FDA

It is still a common belief that any good engineer can build software,
regardless of whether he or she is trained in state-of-the-art software-
engineering procedures. Many companies building safety-critical software
are not using proper procedures…

 Leveson and Turner

425 F19 7:84 ©J Archibald

Lessons

•  Beware of over-reliance on numerical safety analysis.
–  Software contributions to risk are hard to quantify, but often have greater

impact than quantifiable hardware failure rates.

Risk assessment data can be like the captured spy; if you torture it long
enough, it will tell you anything you want to know.

 William Ruckelshaus, two-time head of the EPA

15

425 F19 7:85 ©J Archibald

Tragedy in Panama
•  June, 2001 press release from Int. Atomic Energy Agency described a

radiological calamity at a facility in Panama
–  28 patients were affected: 8 deceased at time of report, 5 of those deaths probably

attributable to overexposure to radiation
–  75% of survivors were expected to develop serious complications

•  Problem was related to data entry
–  Software allowed radiation therapist to draw (on screen) placement of metal

shields or “blocks” that protect healthy tissue from radiation
–  Software allowed use of 4 blocks, doctors wanted to use 5
–  Doctors found they could trick the software by drawing 5 blocks as single large

block with hole in middle
–  Software didn’t handle it consistently, giving different results depending on the

direction that hole was drawn; recommended exposure varied by 2x
–  Physicians were indicted for murder – they are legally required to double-check

calculations by hand
425 F19 7:86 ©J Archibald

Other historical notes
•  Some failures are caused, in part, by instruments that “lied”

–  Two noteworthy examples: Apollo 13 and Three Mile Island
–  In both cases temperature sensors maxed out simply because system designers

assumed higher values were not possible
•  TMI: sensor maxed out at 280 degrees, actual temperature was about 1000 degrees
•  Apollo 13: sensor maxed out at 100 degrees, estimated temperature was about 1000

–  Tough to anticipate: specifications are notoriously incomplete; design decisions
undoubtedly seemed reasonable at the time

Civil engineers study old bridge failures. Aircraft designers have a wealth of
information from plane crashes. We, too, cannot afford to thwart disaster by
learning solely from our own experiences.

 Jack Ganssle

425 F19 7:87 ©J Archibald

As a rule software systems do not work well until they have been used, and have
failed repeatedly, in real applications. Generally, many uses and many failures are
required before a product is considered reliable. Software products, including
those that have become relatively reliable, behave like other products of evolution-
like processes; they often fail, even years after they were built, when the operating
conditions change.

 David Parnas

More food for thought

425 F19 7:88 ©J Archibald

Software errors

While there are errors in many engineering products, experience has shown that
errors are more common, more pervasive, and more troublesome in software than
in other technologies. [Despite extensive internal testing,] products fail in their
first real use because the situations that were not anticipated by the programmers
were also overlooked by the test planners.

 David Parnas

425 F19 7:89 ©J Archibald

Copy and paste is a design error.

Selected Parnas Quotes

One bad programmer can easily create two new jobs a
year.

Artificial intelligence has the same relation to
intelligence as artificial flowers have to flowers.

Find the simplest model that is not a lie: that is the key
to better software design.

Complexity is not a goal. I don't want to be remembered
as an engineer of complex systems.

David Parnas, ACM Fellow,
Software Engineering expert

425 F19 7:90 ©J Archibald

Ethical Considerations

•  What can reasonably be expected of companies?
–  Creating adequate documentation for designs?
–  Recording and following up on reported incidents?
–  Requiring software audit trails?

•  What can reasonably be expected of individual employees?
–  Staying current in their fields?
–  Voicing concerns about product quality and safety?

16

425 F19 7:91 ©J Archibald

8.2: Basic design principles

•  Fundamentally, embedded systems respond to events
–  “Interrupts are the driving force in embedded software”
–  In the absence of events, what can system do?

•  Collect and record statistics
•  Perform diagnostics

•  Response to each event/interrupt is usually something like:
–  Moving data to/from a hardware device
–  Signaling a task
–  Sending a message to a task

425 F19 7:92 ©J Archibald

•  Three tasks, all blocked until
something happens

•  Each event causes an ISR to
run, which sends data, requests,
and commands to tasks

•  Tasks respond with actions that
include sending messages to
other tasks

•  Many systems are organized in
this way

Telegraph Operation

Interrupt routine.
Receives network frame

DDP protocol task.
Determines if frame is
addressed to Telegraph.

ADSP protocol task.
Determines if frame is
print data, status request, etc.

Serial port task.
Determines if serial data
contains new status.

Interrupt routine.
Receives serial data.

Received
frames

Frames addressed
to Telegraph

Print data

Response to
status requests

New status

Received
data

Send response to
status requests to
network hardware

Discard frames
not addressed
to Telegraph

Print data sent
to serial port

 Message passed through RTOS
 Other task activity

Illustration: Telegraph

425 F19 7:93 ©J Archibald

Basic design decisions

•  Designer must determine
–  The division of work between ISRs and tasks
–  Number of tasks, and the division of work between them
–  Relative task priorities
–  How data is to be communicated
–  Details of software that will interface with hardware
–  Response time constraints for important actions
–  How shared-data problems will be avoided

425 F19 7:94 ©J Archibald

Guidelines for interrupts

ISRs and handlers should be short, for two reasons:

1.  Lengthy ISRs slow the entire system down
–  They increase latency of lower priority ISRs
–  They increase response time of all tasks

2.  Interrupt code is “more error prone, and harder to debug than task code”
–  Your experience in this class probably helps you see why this is true

425 F19 7:95 ©J Archibald

Balancing ISRs and tasks:
Two extremes

•  Minimal ISR
–  Sends each character to processing

task in a separate message

•  Maximal ISR
–  On first interrupt, ISR spins until

complete command received
–  Adds each new char to buffer if not

newline
–  If newline, handles command

Assume system responds to commands (strings) that arrive via a serial
port, one interrupt per character

425 F19 7:96 ©J Archibald

Finding a compromise

•  Both alternatives on previous slide are very bad ideas
–  First alternative results in complex ISR that runs far too long

•  Makes design very difficult to debug
•  Slows response for all task code in system

–  Second alternative results in simple ISR, but
•  Too many messages are sent, with too much RTOS overhead

•  What is a better solution?
–  ISR buffers each character (in dedicated, persistent char array)
–  When newline is received, ISR sends complete command as single message
–  Compare this approach with code on next slide...

17

425 F19 7:97 ©J Archibald

But, message is just a flag saying the
next command is available. A
semaphore would be a better choice
here.

Command buffer is a shared data
structure accessed using head and tail
pointers that work on different parts of
the array, so we shouldn’t have a
shared data problem.

Is this well-written code?

#define SIZEOF_CMD_BUFFER 200
char a_chCommandBuffer[SIZEOF_CMD_BUFFER];
#define MSG_EMPTY ((char *) 0)
char *mboxCommand = MSG_EMPTY;
#define MSG_COMMAND_ARRIVED ((char *) 1)

void interrupt vGetCommandCharacter (void)
{
 static char *p_chCommandBufferTail = a_chCommandBuffer;
 int iError;

 *p_chCommandBufferTail = !! char read from hardware
 if (*p_chCommandBufferTail == ’\r’)
 sc_post (&mboxCommand, MSG_COMMAND_ARRIVED, &iError);

 /* Advance the tail pointer and wrap if necessary */
 ++p_chCommandBufferTail;
 if (p_chCommandBufferTail == &a_chCommandBuffer[SIZEOF_CMD_BUFFER])
 p_chCommandBufferTail = a_chCommandBuffer;

 !! Reset the hardware as necessary
}

void vInterpretCommandTask (void)
{
 static char *p_chCommandBufferHead = a_chCommandBuffer;
 int iError;

 while (TRUE) {
 /* wait for next command to arrive */
 sc_pend (&mboxCommand, WAIT_FOREVER, &iError);

 /* we have a command */
 !! interpret the command received
 !! advance p_chCommandBufferHead past <cr>
} Fig. 8.2

Moreover, the code does not test for
overflow, either in the command
buffer or in the mailbox.

425 F19 7:98 ©J Archibald

How many tasks?

•  Advantages of having many tasks:
–  Tasks will be smaller, simpler, easier to write and debug
–  Tasks can be dedicated to servicing a single event; a separate task can be

used for each type of event
–  Easier to make task code modular
–  Often easier to encapsulate data and hardware details within tasks
–  Designer has more control over relative response times for much of the

work performed by tasks

425 F19 7:99 ©J Archibald

How many tasks?

•  Disadvantages of having many tasks:
–  More memory needed for stacks, message buffers
–  More CPU time spent switching tasks
–  More calls to RTOS, increased system overhead
–  More likely to have data sharing between tasks, increasing the likelihood

of shared-data problems
–  More need for semaphores to protect shared data, increasing overhead and

the likelihood of semaphore bugs
–  More need for messages, queues, pipes for communication between tasks,

increasing overhead and the likelihood of related bugs

425 F19 7:100 ©J Archibald

Comparing the tradeoffs

•  The playing field is not level:
–  If you have many tasks, the negative consequences are automatic
–  The advantages of many tasks come only if you use tasks well, and if

your design does a good job of dividing the work

•  The bottom-line recommendation:
 “Other things being equal, use as few tasks as you can get away

with; add more tasks to your design only for clear reasons.”

425 F19 7:101 ©J Archibald

General suggestions

•  All else being equal:
–  Have small, simple tasks
–  Have a separate task for work done in

response to each different event
•  Example system (printer) at right:

–  One task handles printer’s paper
mechanism

–  One task handles button presses on
front panel

–  One task handles display: resolves
conflicts between queued messages
from other tasks

Figure 8.3

Display task

PRINTER  
MELTDOWN!

Hardware display

“Paper jam”

“Out of paper”

“Copies = 1”

“Form = 66 lines”

Button
handling task

Paper
handling task

425 F19 7:102 ©J Archibald

Recommended
task structure

•  Spin in loop, waiting for signal or
message

•  Block in only one place; behavior is
easier to understand

•  Task response time is predictable,
more easily determined

/* vtaska.c */
!! Private static data is declared here

void vTaskA (void)
{
 !! More private data declared here,
 !! either static or on the stack

 !! Initialization code, if needed

 while (FOREVER)
 {
 !! Wait for system signal (event, msg, etc.)

 switch (!! type of signal)
 {
 case !! signal type 1:
 …
 break;

 case !! signal type 2:
 …
 break;
 …
 }
 }
} Fig. 8.5

18

425 F19 7:103 ©J Archibald

Creating and destroying tasks

•  Overhead of creating tasks when needed,
then deleting, is high

–  Seldom a good idea at runtime
–  No real benefit: task and data must remain

memory resident anyway

•  Consider possible dangers of deleting task:
–  What if task holds a semaphore?
–  What if task empties a queue that still has

an entry?
–  What if task holds a memory buffer that has

not been freed?

 Table 8.1: RTOS timings on
 a 20 MHz Intel 80386

 Service Time
Get a semaphore 10 µsec
Release semaphore 6-38 µsec
Switch tasks 17-35 µsec
Write to queue 49-68 µsec
Read from queue 12-38 µsec
Create a task 158 µsec
Delete a task 36-57 µsec

425 F19 7:104 ©J Archibald

Time slicing
•  Some RTOSs allow multiple tasks at same priority level; execution

alternates between them (time slicing)
•  Advantage:

–  Fairness: each task gets to make some progress
•  Disadvantage:

–  Increased system overhead: response time is actually worse
•  Author’s recommendation:

–  Avoid assigning tasks same priority (even if RTOS allows this)
–  If tasks have same priority, turn off time slicing in RTOS “unless you can

pinpoint a reason that it will be useful in your system”

425 F19 7:105 ©J Archibald

Restrict your use of RTOS

•  To save memory, the RTOS can usually be configured to load only
those system functions that are used
–  Consequence: application with 6 pipes will probably require less memory

(for RTOS code) than version with 5 pipes and 1 queue

•  Many developers use wrapper functions (a shell) rather than direct calls
to RTOS routines
–  Restricts usage to selected subset of RTOS functions
–  Makes code easier to port to a different RTOS
–  Only real downside: adds a little overhead to each function call

425 F19 7:106 ©J Archibald

Section 8.3: A design example
•  Underground tank monitoring system

–  Monitors up to 8 tanks by reading thermometers and float levels
•  CPU can read temperature in any tank at any time; to read float level,

CPU tells hardware which tank, then waits for interrupt with desired reading

–  Both float level and temperature used to calculate gallons
–  Level in every tank must be monitored periodically – must identify leaking

tanks and tanks about to overflow (and trigger external alarm)
–  User device has 16-button keypad, 20-char LCD, thermal printer

•  User selects information to be displayed; may be overridden if leak or overflow
detected

•  Some commands involve multiple button sequences; prompts are displayed
•  Button presses cause interrupts
•  User can request printed reports 30-50 lines long; reports may be queued
•  Printer accepts one output line at a time; interrupts when ready for next line

425 F19 7:107 ©J Archibald

Design example, cont.
•  Considerations

–  When filling tank, float level must be read several times per second
–  System must respond within 0.1 sec when user presses button
–  Printer prints 2 to 3 lines per second
–  Cost constraints dictate the use of an 8-bit processor
–  Roughly 4-5 seconds required to compute gallons in a tank
–  Cannot read float level in any tank until previous read has completed

•  Questions arising in design phase
–  Can overflow be detected using float levels rather than gallons?
–  How can both lengthy computation and quick responses be supported?
–  What tasks will be created, with what relative priorities?
–  What mechanisms will be used by the ISRs to signal tasks?
–  How will shared resources be protected?

425 F19 7:108 ©J Archibald

Design example, cont.
•  Read through it

–  Gives insight into challenges faced by embedded system developers
–  Design process can help in Lab 8 in creating your application code
–  Shows that “designing for an RTOS is to some extent a mixture of black

magic and tea leaf reading along with common sense and good software
engineering practice”

19

425 F19 7:109 ©J Archibald

Supplemental design example

•  Firmware in the HP Inkjet printer, some models of which were very
inexpensive
–  Courtesy Eric Stucki, BYU alum (MS), former HP employee

•  Complexity of Inkjet software
–  Uses full-featured commercial RTOS (VxWorks, ThreadX)

–  20-30 tasks, many interrupts, 7 interrupt priority levels

–  80-100 firmware modules, complex call structure

–  Roughly 4MB compressed code (compressed in ROM, uncompressed and
loaded in RAM at power-up)

–  Development required 20 to 30 engineers for 12-18 months

425 F19 7:110 ©J Archibald

Our focus

USB Driver

DMA
Interrupt

USB
Interrupt

Timer Library Routine

All other code

Protocol Task 1 Protocol Task 2

Timer
Interrupt

(Transmits information
over USB connection)

USB Hardware

What should this
driver look like?

425 F19 7:111 ©J Archibald

Driver design considerations
•  It will service requests from clients

–  Both ISRs and tasks
•  It should never refuse a request and it should never block

–  Can’t always respond immediately, so requests must be queued
–  Queue must never overflow – how to achieve this?

•  Runtime efficiency is imperative

•  Note: similar driver required for each device/transport
–  1284, USB, 1394, 802.3, 802.11, Bluetooth, etc.

425 F19 7:112 ©J Archibald

What form should driver take?
•  ISR?

–  Not a viable option – can be ruled out
–  Driver actions too lengthy and complicated to be in interrupt code
–  ISR can’t get semaphores, allocate memory, receive messages, etc.

•  Task?
–  Explored as option 1 in following slides

•  Library function called by clients (both ISRs and tasks)?
–  Explored as option 2

425 F19 7:113 ©J Archibald

Option 1: Make driver a task
•  Use a message queue to handle requests

–  Clients ask driver to take actions by sending it messages
–  Driver task simply empties message queue, services requests

•  Advantage:
–  Relatively straightforward implementation

•  Disadvantages:
–  Servicing every request causes a context switch
–  Serious problem if caller ever finds message queue full

425 F19 7:114 ©J Archibald

Option 2: Make driver a function
•  Driver is a reentrant library function

–  Implication: internal critical sections must be identified and protected
•  Advantage:

–  Does not require context switch for each request

•  Disadvantages:
–  Many different shared-resource conflicts are possible, arising from wide

variety of different call paths
–  Complicated by fact that driver may be called by both tasks and ISRs

20

425 F19 7:115 ©J Archibald

Critical sections, first try

// Enter critical section
intLock();

// Access shared data
list_append(_request_list,
 new_request);

// Exit critical section
intUnlock();

•  Basic idea: disable all interrupts
•  Concerns:

–  Inefficient: unrelated higher priority
interrupts needlessly locked out

–  What if interrupts were already disabled
(driver called from critical section)?

–  Might interrupts be disabled for too
long?

•  Could a semaphore be used to enforce
critical section?

disables interrupts

enables interrupts

425 F19 7:116 ©J Archibald

Critical sections, second try

ipl_t ipl;

// Raise int. priority level
ipl = intLevelSet(CRIT_IPL);

// Access shared data
list_append(_request_list,
 new_request);

// Restore int. priority level
intLevelSet(ipl);

•  Basic idea: disable interrupts below a certain
priority level, restore original status on exit

•  Assumptions/observations:
–  intLevelSet() returns prior interrupt priority level
–  CRIT_IPL is level of highest priority interrupt that

interacts with driver
–  Interrupts with priority higher than CRIT_IPL can

still run
–  Works when driver called from critical section

•  Concern
–  What if task A is in driver, higher priority interrupt

causes context switch to task B?
–  Task B would then execute with some interrupts

disabled

425 F19 7:117 ©J Archibald

Critical sections, third try

•  Create two new functions:
–  critical_start()
–  critical_end()

•  Use them like this:

ipl_t prev_ipl;

// Enter critical section
prev_ipl = critical_start();

// Access shared data
list_append(_request_list, new_request);

// Exit critical section
critical_end(prev_ipl);

425 F19 7:118 ©J Archibald

Contents of new functions

ipl_t critical_start(void)
{
 ipl_t prev_ipl;

 // Disable task switches if
 // called from task context
 if (!intContext())
 taskLock();

 // Set new int. priority
 prev_ipl = intLevelSet(CRIT_IPL);
 assert(prev_ipl <= CRIT_IPL);
 return(prev_ipl);
}

void critical_end(ipl_t ipl)
{
 ipl_t prev_ipl;

 // Restore int. priority
 prev_ipl = intLevelSet(ipl);
 assert(prev_ipl >= ipl);

 // Enable task switches if
 // called from task context
 if (!intContext)
 taskUnlock();
}

425 F19 7:119 ©J Archibald

Advantages of this approach

•  Higher priority interrupts are not affected, so they can still run
•  Original interrupt priority level is restored, so nested critical sections

are okay
•  Call to taskLock() prevents scheduler from switching to another task

while any task is in critical section
–  When higher priority interrupt enables a higher priority task, it cannot

run until driver leaves original critical section

425 F19 7:120 ©J Archibald

Challenge #2
•  Clients submit requests by calling this function

–  This function must never cause caller to block
–  Requests include pointer to “callback” function that driver will call when

request has completed
•  So what should driver do when it gets a request that it can’t satisfy

immediately?
–  Put in queue of work to be done later, but how to allocate space for queue?
–  Could allocate fixed size array, but will it be big enough?

•  Their elegant solution:
–  Make caller responsible for allocating space: request includes pointer to

struct to store request (with next and prev pointers)

21

425 F19 7:121 ©J Archibald

Section 8.4: Encapsulation

•  Basic idea: hide implementation details within functions
•  Advantages:

–  Makes rest of code simpler; it just makes high-level function calls
–  Only one part of code must address the low-level details

–  Reduces likelihood of bugs

•  Focus in this section:
–  Encapsulating semaphores and queues

425 F19 7:122 ©J Archibald

Thought experiment

•  Suppose application will include a global variable that represents the time
•  Design option 1:

–  Establish coding rule: any task can access time variable directly, but only after
obtaining protecting semaphore

–  What can go wrong?

•  Design option 2:
–  Make time variable static, accessible only by code within same module

–  Create routines to return current time and to update the time; use semaphore
inside those routines to ensure mutual exclusion

–  Compared with option 1, what can go wrong?

425 F19 7:123 ©J Archibald

A queue example
•  Consider potential errors in code where tasks and interrupt code

communicate through a queue:
–  Message might be bogus: pointer to wrong struct, illegal values, etc.
–  Sender might have put message in wrong queue
–  Queue, queue struct, and messages could be overwritten and corrupted
–  These problems possible because of global nature of queue

•  Encapsulation solution:
–  Declare all queue data structures to be “static” within separate C file
–  Create reentrant routines to read and write queue correctly
–  All other code accesses queue indirectly through readqueue(), writequeue();

no direct access of queue possible

425 F19 7:124 ©J Archibald

Encapsulation

•  Essential characteristics:
–  Interface makes operations visible, hides data and implementation
–  Only operations specified in the interface are allowed
–  Implementation can be changed without modifying the interface:

application code is protected from implementation changes

•  Best candidates for encapsulation:
–  Actions that make code non-reentrant
–  Complex constructs that are hard to make bug-free

•  Bottom line: consider encapsulating direct access to
–  Shared variables, semaphores, queues, hardware

425 F19 7:125 ©J Archibald

8.5: Hard real-time systems
•  Designers must guarantee that strict deadlines will be met. How is this

accomplished?
–  Contributing factors:

•  Efficiency of code in ISRs and tasks; data structures and algorithms
•  Compiler efficiency: what is output for a given C construct?
•  Assigned task priorities
•  Frequency of interrupts, context switches
•  Performance of microcontroller

–  To guarantee all deadlines will be met, you must know:
•  Worst-case run-time of all ISRs and tasks
•  Maximum frequency of events/interrupts in system

•  To pull this off in a real system is tricky
•  Ensuring that deadlines are met is an ongoing research topic

425 F19 7:126 ©J Archibald

Hard real-time systems

•  Why little mention of research results in our text?
–  Most academic results based on simplifying assumptions to make the

problems tractable
–  Examples:

•  No task switch overhead, no task blocking on semaphores, etc.
•  All worst case timing of tasks and ISRs is known a priori

–  Result: academic contributions less useful than one might hope

•  One research result worth knowing: rate-monotonic systems

22

425 F19 7:127 ©J Archibald

Rate-monotonic scheduling

•  Assumptions
–  Preemption, no resource sharing, no context switch overhead
–  Deadlines are exactly equal to periods
–  Static priorities assigned in rate-monotonic fashion: shortest period

(greatest execution frequency) is given highest priority, and so on

•  Result (Liu and Layland, 1973)
–  If CPU utilization is below a specific bound (depends on number of tasks),

a feasible schedule exists that meets all deadlines.
–  Bound for 2 tasks ≈ 0.8284; bound for ∞ tasks = ln 2 ≈ 0.6931
–  Above 70%, it may still work, but no guarantee
–  In other 30% of CPU time, lower-priority (non-essential) tasks may run

See Wikipedia article 425 F19 7:128 ©J Archibald

Rate-monotonic result

•  How useful is this result to system designers?
–  Because of assumptions, probably most useful to a practitioner as a

rule of thumb to confirm that deadlines will be met
–  Gives a meaningful way to assign task and ISR priorities

•  Related problem: what if most frequently run task is not the most
important?
–  Assigning it highest priority could be viewed as a form of priority

inversion
–  But not really a problem if all deadlines are met

425 F19 7:129 ©J Archibald

Hard real-time systems

•  Note importance of knowing worst-case execution time (WCET) of all
code in system

–  In practice, how is this done? Empirically? Analytically?
–  What tools are useful in this context?

•  Desirable software property in this regard:
–  “Being predictable is almost more important than being fast.”
–  “It is important to write subroutines that always execute in the same

amount of time or that have a clearly identifiable worst case.”

425 F19 7:130 ©J Archibald

Example: the scheduler
•  What operations does RTOS perform that relate to scheduling?

1.  Change state of task to ready
2.  Change state of task to blocked
3.  Determine highest priority ready task

•  Data structure used by RTOS determines overhead of these operations
–  Many of us use a queue of ready tasks in our YAK kernels
–  Worst case depends on position of TCB in queue and queue length

•  µC/OS has algorithm, data structures with (nearly) constant execution
time for all three operations

–  Let’s see how µC/OS does it

425 F19 7:131 ©J Archibald

Bit j (0 ≤ j ≤ 63) in this 8-byte array
corresponds to task with ID/priority j;
the bit is 1 iff the task is ready

Bit i (0 ≤ i ≤ 7) in this 8-bit value
corresponds to row i in OSRdyTbl[];
the bit is 1 iff the row value is non-zero

µC/OS scheduling: data structures

What is overhead of
•  marking a task ready?
•  marking a task as not ready?
•  finding highest priority bit that is set?

OSRdyGrp

OSRdyTbl[8]

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0

1

2

3

4

5

6

7

row

425 F19 7:132 ©J Archibald

Index with arbitrary byte value,
returns index of least significant bit
that is set (bit 0 is highest priority)

Index with desired bit position (0-7),
returns bit mask with 1 in desired
position, other bits 0

µC/OS scheduling: lookup tables
OSMapTbl[] = {
 0x01, 0x02, 0x04, 0x08,
 0x10, 0x20, 0x40, 0x80 } ;

OSUnMapTbl[] = {
 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 } ;

Example: Suppose index is 21610 (110110002);
OSUnMapTbl[216] = 3, and bit 3 is least
significant bit that is set

LUTs reduce overhead for shifting and iteration

0 1 2 3 4 5 6 7

23

425 F19 7:133 ©J Archibald

Code to place task p in “ready list”:
 OSRdyGrp |= OSMapTbl[p>>3];
 OSRdyTbl[p>>3] |= OSMapTbl[p&0x07];

Code to remove task p from “ready list”:
 if ((OSRdyTbl[p>>3] &= ~OSMapTbl[p&0x07]) == 0)
 OSRdyGrp &= ~OSMapTbl[p>>3];

Code to determine highest priority ready task:
 y = OSUnMapTbl[OSRdyGrp];
 x = OSUnMapTbl[OSRdyTbl[y]];
 p = (y << 3) + x;

µC/OS “ready list” operations

OSRdyGrp

OSRdyTbl[8]

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0

1

2

3

4

5

6

7

row

425 F19 7:134 ©J Archibald

Code to place task p in “ready list”:
 OSRdyGrp |= OSMapTbl[p>>3];
 OSRdyTbl[p>>3] |= OSMapTbl[p&0x07];

Example “ready list” operation

Example with p = 37 (1001012)

p>>3 = 1002 = 4, and
OSMapTbl[4] is 0x10,
so bit “4” in OSRdyGrp is set to 1

p&0x07 = 1012 = 5, and
OSMapTbl[5] is 0x20
so bit 5 in OSRdyTbl[4] is set to 1

OSRdyGrp

OSRdyTbl[8]

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0

1

2

3

4

5

6

7

row

425 F19 7:135 ©J Archibald

8.6: Saving memory
•  Memory limitations are a fact of life for embedded developers

–  Everything must fit in the ROM and RAM that is available
•  Code and constant data must be stored in ROM
•  Variable data must be in RAM at runtime

•  Would it help to use packed data structures?
–  Example: multiple Booleans stored in same byte, or 8-bit variables in same

word
–  Advantage: saves data memory
–  Disadvantage: increases size + complexity of code accessing variables

•  What else can you do?
–  What consumes the most memory in an RTOS application?

425 F19 7:136 ©J Archibald

Task stacks
•  How can worst-case stack size be determined?

–  Anything larger simply wastes memory
•  Method 1: static analysis

–  Add up size of each stack frame for worst-case function nesting
–  Add frame sizes for worst-case interrupt nesting
–  Add worst-case frame sizes for RTOS functions that task calls

•  Method 2: experimental analysis
–  Initialize all stack memory locations with specific value
–  Run for a long time, observe max size reached

•  Can you guarantee the accuracy of either approach?

425 F19 7:137 ©J Archibald

How can code space be reduced?
•  Avoid redundant functions

–  Make sure RTOS includes only the functions used

•  Use C constructs that compile efficiently for that platform
–  Alternatives in source code often result in very different assembly code

•  Consider using static variables instead of variables on stack
–  On some CPUs, stack-based variables take more instructions to access

•  On 8-bit processor, use char instead of int when possible
–  With 16-bit CPU, avoid 32-bit operations

•  Write everything in assembly (Not recommended!)
–  Much more work, but can beat C compiler in some cases

425 F19 7:138 ©J Archibald

8.7: Saving power

•  Battery lifetime important in many embedded systems
•  Most common approach: turn off unused parts of system

•  What can be done under software control?
–  Most microprocessors have at least one power-saving mode

–  Details are processor specific
•  Sleep mode, low-power mode, idle mode, standby mode, etc.

–  Let’s look at three common alternatives

24

425 F19 7:139 ©J Archibald

Power saving mode #1

•  Processor is powered down, and it stops executing instructions;
on-chip peripherals continue to operate

•  Interrupts cause the processor to wake up
–  ISR will execute, then return to task code right after instruction that put

processor to sleep
–  CPU will then execute normally (until it is put to sleep again)

•  Tradeoffs:
–  Saves less power than other modes; on-chip peripherals always on
–  Little overhead on restart; software knows precisely where it is
–  Some actions can continue while processor sleeps (DMA transfers,

timers, etc.)

System

Peripherals

CPU

425 F19 7:140 ©J Archibald

Power saving mode #2
•  Very common: essentially entire processor chip is turned “off”

–  Processor clock is turned off; built-in peripherals are stopped, turned off
•  Special reset circuitry is added to reset processor when needed

–  Software must distinguish between initial power-up and restart
–  Can write a particular value in memory location to check on reboot
–  SRAM remains on, but requires little power

•  Tradeoffs:
–  Saves more power than mode #1
–  Requires special circuitry to generate reset
–  Some overhead to determine power-up or restart

System

Peripherals

CPU

425 F19 7:141 ©J Archibald

Power saving mode #3

•  Entire system is powered down
–  User must turn it back on when needed

–  Software must have means to turn entire system off
–  User must have means to turn system back on

•  Example: pulling trigger on bar-code scanner

•  Tradeoffs:
–  Power consumption reduced to zero during power down
–  Software must save important values in non-volatile memory;

anything in RAM will be lost

System

Peripherals

CPU

425 F19 7:142 ©J Archibald

Aside: testing memory

•  Virtually every embedded system requires memory tests
–  Errors are almost always in board wiring, not chips
–  Desired connection is missing (open), or wrong connection made (short)
–  Tricky: system with missing memory chips may pass naive test!

•  Barr’s paper describes three test functions that work well
–  Data bus: “walking 1s test”; write value, read and verify
–  Address bus: generate addresses with “walking 1s”; write initial

value to all, then write inverted value to one address; make sure
contents at other addresses not affected

–  Device: write location-specific value to each address; verify each
location in turn and invert; verify inverted values

See: Barr, “Fast Accurate Memory Test Suite”, Embedded Systems Programming, July 2000

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

Walking 1s

425 F19 7:143 ©J Archibald

Discussion

•  The test functions need to be run in order
–  Each assumes that system passed previous tests

•  Testing is most useful during product development
–  If test fails, visually indicate failure by turning on LED
–  Then step through test program in debugger to see which test failed and why

•  If included in shipped code, run at power-up and reset
–  No good alternative if it fails
–  Notify consumer to contact customer support for further diagnosis, repair, or

replacement

