
1

425 F19 5:1 ©J Archibald

One more thing...

•  YAK kernel functions must be reentrant

•  What does this mean, and why is it important?

•  Let’s revisit the shared-data problem
–  We saw the problem between ISRs and task code

–  New, but not a surprise: the problem arises between RTOS tasks

–  Tasks often share data and helper functions, and inconsistency can
occur if shared data is accessed non-atomically

•  Let’s revisit how memory is used with an RTOS

425 F19 5:2 ©J Archibald

Task memory organization
Registers

&
Stack

(Local
Private

Memory)

Task

Registers
&

Stack

(Local
Private

Memory)

Task

Registers
&

Stack

(Local
Private

Memory)

Task

Registers
&

Stack

(Local
Private

Memory)

Task

Registers
&

Stack

(Local
Private

Memory)

Task

Global Shared Memory
(Shared Resource)

Key point: all non-stack memory is shared

425 F19 5:3 ©J Archibald

Global data

•  Tasks, ISRs, and the kernel share all global data
•  Easy, convenient for task to send data to another task using global

variables
•  Shared data problems can arise when

–  tasks access global variables defined by application code, and
–  kernel functions access global variables defined by kernel

•  Embedded developers must be aware of where C variables are stored
–  Critical to identify those that can cause problems

425 F19 5:4 ©J Archibald

Example: Figure 6.6
What can go wrong here?

struct {
 long lTankLevel;
 long lTimeUpdated;
} tankdata[MAX_TANKS];

void vRespondToButton(void)
{ /* high priority task */
 int j;
 while (TRUE) {
 !! Block until button pressed
 j = !! ID of button pressed
 !! output ITankLevel[j]
 !! output ITimeUpdated[j]
 }
}

void vCalculateTankLevels(void)
{ /* low priority task */
 int i = 0;
 while (TRUE) {
 !! read float levels in tank i
 !! do lots of calculations

 /* store result */
 tankdata[i].lTimeUpdated = !! current time
 tankdata[i].lTankLevel = !! current level

 !! pick next tank to handle, etc.
 }
}

425 F19 5:5 ©J Archibald

A more subtle problem: Figure 6.7
What can go wrong here?

void Task1(void)
{ . . .
 vCountErrors(9); . . .
}

void Task2(void)
{ . . .
 vCountErrors(11); . . .
}

static int cErrors;

void vCountErrors(int cNewErrors)
{
 cErrors += cNewErrors;
}

425 F19 5:6 ©J Archibald

Shared data: the problem revisited

Task A

 R1 ← X
 R1 ← R1+1
 X ← R1

 R1 ← X
 R1 ← R1+1
 X ← R1

Task B

R1 ← X

R1 ← R1+1
X ← R1

R1 ← X
R1 ← R1+1
X ← R1
…

Switch to Task B

Switch to Task A

X=5

X=?

Suppose both Task A and Task B increment shared variable X

(code for load-store
architecture)

2

425 F19 5:7 ©J Archibald

Shared data: a solution

Task A
 Disable Int
 R1 ← X
 R1 ← R1+1
 X ← R1
 Enable Int

Task B Disable Int
R1 ← X
R1 ← R1+1
X ← R1
Enable Int

Disable Int
R1 ← X
R1 ← R1+1
X ← R1
Enable Int

Switch to Task B

Switch to Task A
(eventually)

X=5

X=?

 Disable Int
 R1 ← X
 R1 ← R1+1
 X ← R1
 Enable Int

atomic

atomic

425 F19 5:8 ©J Archibald

Reentrant functions

•  The original code in vCountErrors() is not reentrant

•  A function is reentrant if it can be called by multiple tasks
and still work correctly in all cases
–  Regardless of timing of interrupts or task switches

•  Kernel functions can be called by multiple tasks and ISRs
–  For correct operation, your YAK kernel functions must be

reentrant

425 F19 5:9 ©J Archibald

Reentrant: definition (Wikipedia)

A computer program or routine is described as reentrant if it
can be safely executed concurrently; that is, the routine can
be re-entered while it is already running. To be reentrant, a
function

•  must hold no static data,
•  must not return a pointer to static data,
•  must work only on the data provided to it by the caller,
•  must not rely on locks to singleton resources, and
•  must not call non-reentrant functions.

425 F19 5:10 ©J Archibald

Reentrant: definition (our text)

To be reentrant, a function must not

1.  use variables in a non-atomic way, unless they are local
to the calling task, or

2.  call any other functions that are not reentrant, or

3.  use the hardware in a non-atomic way.

425 F19 5:11 ©J Archibald

Shared variables

•  Does requirement that functions be reentrant mean they
cannot access shared variables?
–  No, shared variable access is okay if atomic

•  Atomicity seldom occurs naturally. Programmer must
–  recognize critical sections in code (portion that must be atomic to

work correctly), then

–  make each critical section atomic by disabling/enabling interrupts
(or using alternate approaches, usually with more overhead).

425 F19 5:12 ©J Archibald

Shared hardware
•  Possible hardware problems with non-reentrant code:

–  Garbled output on printer or screen
–  Garbled transmission over wireless link

•  Interleaved use of hardware by tasks is problematic
–  Related problems will not arise if code is reentrant

•  Reentrant code requirement:
–  Use of hardware must be atomic
–  Code must finish each hardware “transaction” that it starts before

something else can use the hardware

3

425 F19 5:13 ©J Archibald

What’s okay in reentrant code?

Suppose function
accesses all variables
listed on this slide.

Is it reentrant?

static int static_int;
int public_int;
int initialized = 4;
char *string = “Where does this string go?”;
void *vPointer;

void function (int parm, int *parm_ptr)
{
 static int static_local;
 int local;
 .
 .
 .
}

425 F19 5:14 ©J Archibald

What’s okay in reentrant code?

static int static_int;
int public_int;
int initialized = 4;
char *string = “Where does this string go?”;
void *vPointer;

void function (int parm, int *parm_ptr)
{
 static int static_local;
 int local;
 .
 .
 .
}

Definitely a problem:
accesses to

global variables

425 F19 5:15 ©J Archibald

What’s okay in reentrant code?

static int static_int;
int public_int;
int initialized = 4;
char *string = “Where does this string go?”;
void *vPointer;

void function (int parm, int *parm_ptr)
{
 static int static_local;
 int local;
 .
 .
 .
}

Definitely a problem:
accesses to

global variables

Definitely not
a problem:

local variables

425 F19 5:16 ©J Archibald

What’s okay in reentrant code?

static int static_int;
int public_int;
int initialized = 4;
char *string = “Where does this string go?”;
void *vPointer;

void function (int parm, int *parm_ptr)
{
 static int static_local;
 int local;
 .
 .
 .
}

Definitely a problem:
accesses to

global variables

Possibly a problem:
local copy
of pointer

Definitely not
a problem:

local variables

425 F19 5:17 ©J Archibald

Reentrancy: the bottom line

•  To determine if a function is reentrant, you must examine
all variables it accesses
–  You must know where each variable is stored
–  Non-atomic accesses to variables not on task stack are a problem
–  Example: in initial version of clib.s, output from print was sometimes

messed up
•  Function was not reentrant; print used global char array to generate string
•  Code fix: a local array (allocated on stack) was used instead

•  In embedded systems, the implementation details matter

425 F19 5:18 ©J Archibald

Applying the three rules:
Is display() reentrant?

BOOL fError; /* flag set by something else */

void display (int j)
{
 if (! fError)
 {
 printf(“Value: %d”, j);
 j = 0;
 fError = TRUE;
 }
 else
 {
 printf(“Could not display value”);
 fError = FALSE;
 }
}

1a. Does it use global variables?
 b. Does it use them in a non-atomic way?
2. Does it call non-reentrant functions?
3. Does it use hardware non-atomically?

4

425 F19 5:19 ©J Archibald

Subtle cases

•  What if the only global variable access is increment?
–  Is access to x for x++ necessarily atomic?

•  Likely to be on 8086 – unless operand size is 32-bits!
•  Will not be on many embedded platforms

–  Best practice: use approach that works for all target platforms
•  Little downside to adding short critical sections

•  What if only access to global variable is a read?
–  Is access to x for y = x necessarily atomic?

•  Not for 16-bit value on 8-bit architecture, etc.

425 F19 5:20 ©J Archibald

Shared resources

Task A

Task B

Shared resource

425 F19 5:21 ©J Archibald

Shared resources

•  When two or more tasks try to use a shared resource at the same time,
failures can occur.

•  To avoid failure, tasks must ensure mutual exclusion: when one task is
using the shared resource, other tasks are excluded.

•  Critical section: section of code in which a shared resource is used
non-atomically.

•  Mutual exclusion: only one task is allowed in critical section at a time.

425 F19 5:22 ©J Archibald

Shared resources

Task A

Task B

Shared resource Shared resource
with semaphore

425 F19 5:23 ©J Archibald

Semaphore

•  One definition:
–  A semaphore is an object that limits shared access to another object

Shared
Resource

425 F19 5:24 ©J Archibald

Semaphore

•  Other definitions:
–  An apparatus for conveying information by means of visual signals,

as a light whose position may be changed
–  Any of various devices for signaling by changing the position of a

light, flag, etc.
–  A system of signaling, esp. a system by which a special flag is held

in each hand and various positions of the arms indicate specific
letters, numbers, etc.

Examples?

5

425 F19 5:25 ©J Archibald

Vocabulary
•  Types of semaphores:

–  Binary (Boolean): simplest
–  Counting (integer): original type, used in YAK

•  Assorted names for semaphore operations:
–  Get and Give
–  Take and Release

•  Terminology used in the book
–  Pend and Post

•  Terminology used in this class and in YAK
–  P and V

•  From the Dutch: Proberen (test) and Verhogen (raise)
•  Terminology used by Edsger Dijkstra who invented semaphores

425 F19 5:26 ©J Archibald

Semaphores

TaskA Semaphore Post

TaskA Semaphore Post

TaskA Semaphore Post

Semaphore

Post Semaphore
(or Release Semaphore)
Semaphore is incremented.

425 F19 5:27 ©J Archibald

Semaphores

TaskB

Semaphore

Pend

TaskB

Semaphore

Pend

TaskB

Semaphore

Pend

Semaphore

TaskB Pend
? Blocked

Semaphore

Pend Semaphore
(or Take Semaphore)
Semaphore is decremented.

If result is negative, task is
blocked.

425 F19 5:28 ©J Archibald

Using counting semaphores
•  How is a semaphore with values > 1 useful?

–  Example: represents the number of available resources:
•  Memory blocks, processors, I/O channels, etc.

•  What is meaning if value < 0?
–  Absolute value is number of waiting tasks

•  Counting semaphores easily simulate binary semaphores:
–  Context will insure that they’re not incremented past 1

•  Initialize to 1, increment only when resource released, etc.
•  May be decremented below zero: two states are {1} and {<1}

425 F19 5:29 ©J Archibald

Using semaphores
Mutual Exclusion
Using a semaphore
to solve the shared
resource problem

Semaphore TaskB Pend
Blocked

4. TaskB wants the
shared resource,
but is blocked.

TaskB Pend Semaphore
6. TaskB gets the
shared resource.

Semaphore TaskA Pend 3. TaskA gets the
shared resource.

TaskA Post Semaphore Unblocks Task B

5. TaskA finishes
with the shared
resource.

1. TaskA and TaskB
share a resource.

Semaphore

2. Semaphore is
initialized with
one flag.

425 F19 5:30 ©J Archibald

Using semaphores Signaling
(Synchronization)
Using a semaphore
to signal another task
1. TaskB cannot
proceed until TaskA
has finished some
operation.

Semaphore TaskB Pend
? Blocked

3. TaskB cannot
proceed yet

TaskA Semaphore Post Unblocks Task B
4. TaskA
completes the
operation

TaskB Pend Semaphore
5. TaskB
proceeds

2. Semaphore is
initialized to 0 (no
flags).

6

425 F19 5:31 ©J Archibald

Semaphore usage: Fig. 6.12

struct {
 long lTankLevel;
 long lTimeUpdated;
} tankdata[MAX_TANKS];

void vRespondToButton(void)
{ /* high priority task */
 int i;
 while (TRUE) {
 !! Block until button pressed
 i = !! ID of button pressed
 TakeSemaphore();
 !! output tank level, timestamp
 ReleaseSemaphore();
 }
}

void vCalculateTankLevels(void)
{ /* low priority task */
 int i = 0;
 while (TRUE) {
 !! read float levels in tank i
 !! do bunches of calculations
 TakeSemaphore();
 !! set tankdata[i].lTimeUpdated
 !! set tankdata[i].lTankLevel
 ReleaseSemaphore();
 !! pick next tank to handle, etc.
 }
}

425 F19 5:32 ©J Archibald

Discussion
•  If TakeSemaphore() is called and the semaphore is not available,

when does control return to the task?
–  The task is blocked until the semaphore is available
–  The unblocked task runs when it is the highest priority ready task
–  Note the role of the RTOS in supporting this functionality

•  Can a high priority task be forced to wait for a lower priority task?
–  Is this a good thing?
–  Is it avoidable?

•  What if a task is interrupted while it holds a semaphore?
–  Can a context switch cause problems for other tasks?
–  More on this shortly…

425 F19 5:33 ©J Archibald

Semaphores vs. disabling interrupts

•  What are advantages of each approach?
•  How does each affect response time of system?
•  Which is easiest to use?
•  Which is more bug-prone?

•  Observations:
–  Disabling interrupts has less overhead but affects entire system
–  Semaphore is more targeted, but has more runtime overhead
–  Disabling interrupts more easily understood

425 F19 5:34 ©J Archibald

Semaphore usage: Fig. 6.14
#define PRIORITY_READ 11
#define PRIORITY_CONTROL 12
#define STK_SIZE 1024
static unsigned RStk[STK_SIZE];
static unsigned CStk[STK_SIZE];
static int iTemperatures[2];
OS_EVENT *p_semTemp;

void main (void)
{
 OSInit();
 OSTaskCreate (vRdTmpTsk, NULLP, (void *)

&RStk[STK_SIZE], PRIORITY_READ);
 OSTaskCreate (vCtrlTask, NULLP, (void *)

&CStk[STK_SIZE], PRIORITY_CONTROL);
 OSStart();
}

void vRdTmpTsk (void) {
 while (TRUE) {
 OSTimeDly (5);
 OSSemPend (p_semTemp, WAIT_FOREVER);
 !! read in iTemperatures[0];
 !! read in iTemperatures[1];
 OSSemPost (p_semTemp);
 }
}

void vCtrlTsk(void) {
 p_semTemp = OSSemCreate(1);
 while (TRUE) {
 OSSemPend (p_semTemp, WAIT_FOREVER);
 if (iTemperatures[0] != iTemperatures[1])
 !! set off howling alarm;
 OSSemPost (p_semTemp);
 !! do other useful work
 }
}

425 F19 5:35 ©J Archibald

Discussion and questions
•  Operational notes:

–  OS prefix indicates kernel functions (in µC/OS)
–  Overall functionality similar to YAK
–  Semaphore pointer initialized, then used with pend and post
–  OS_EVENT struct represents semaphore

•  Questions:
–  What is WAIT_FOREVER parameter in pend?
–  How was semaphore created?

•  What does initialization value of 1 mean?

–  Can anything go wrong with this code?
425 F19 5:36 ©J Archibald

The problem

•  Can’t guarantee that semaphore will be initialized before first
pend call that uses it. (Why?)

•  “If you write embedded code that relies on this kind of thing,
you will chase mysterious bugs for the rest of your career.”

•  Best practice?
–  Put semaphore initialization call in main, where it is guaranteed to execute

before call to OSStart, and therefore before any task runs.

7

425 F19 5:37 ©J Archibald

Using semaphores to make
functions reentrant

•  Surround critical region within function by calls to pend and post
•  Function is then reentrant: can safely be called by any task at any time

calling_function()
{

 reentrant_function();

}

reentrant_function()

{
 SemPend();

 SemPost();

}

Critical Region
Non-critical Region

Non-critical Region

425 F19 5:38 ©J Archibald

Designing with semaphores
•  How many semaphores should you use in your application?
•  Consider extreme cases and the tradeoffs involved:

–  Single semaphore to protect all shared resources:
•  Simple, easy to keep track of
•  Tasks accessing different resources can block each other

–  Many semaphores, one for each shared resource:
•  With many semaphores, increased likelihood of coding errors, confusion
•  A little more storage and processing overhead for system
•  Minimum amount of blocking, best response time
•  Lower priority task won’t cause higher priority task to block unless both try

to acquire the same resource

425 F19 5:39 ©J Archibald

Using semaphores
•  How does the RTOS know which semaphore protects which

data?
–  Actually, it has no knowledge of this

–  RTOS does not know what semaphore protects, so it cannot enforce
program-specific rules of semaphore usage

•  Correct usage is responsibility of application programmer:
–  Must create each semaphore, initialize to proper value, and use

consistently throughout code

•  Semaphores are only as good as the application programmer
using them

425 F19 5:40 ©J Archibald

Semaphores for signaling
static char a_chPrint[10][21]; /* output buffer */
static int iLinesTotal;
static int iLinesPrinted;
static OS_EVENT *semPrinter;

void vPrinterInterrupt (void)
{
 if (iLinesPrinted == iLinesTotal)
 /* report done: release semaphore */
 OSSemPost(semPrinter);
 else
 /* report not done: print next line */
 vHardwarePrinterOutputLine(
 a_chPrint[iLinesPrinted++]);
}

void vPrinterTask(void)
{
 BYTE byError;
 int wMsg;
 semPrinter = OSSemInit(0);
 while (TRUE)
 {
 wMsg = (int) OSQPend (QPrinterTask,
 WAIT_FOREVER, &byError);
 !! Format the report into a_chPrint
 iLinesTotal = !! count of lines in report
 /* print first line of report */
 iLinesPrinted = 0;
 vHardwarePrinterOutputLine(
 a_chPrint[iLinesPrinted++]);
 OSSemPend(semPrinter, WAIT_FOREVER,
 &byError);
 }
}

 Task formats output, prints first line.
 Printer interrupts after each line prints.
 ISR prints remaining lines, signals task.

425 F19 5:41 ©J Archibald

Discussion
•  In code example, semaphore was used to signal

–  Sending task does a post
–  Receiving task does a pend
–  Compare with mutual exclusion: same task calls pend, then post

•  Initial semaphore value must be chosen carefully
–  In example, semaphore set to 0 (not available); typical for signaling

•  Task pends on both queue and semaphore
–  Is order interchangeable?
–  Order of multiple pends is potential cause of bugs

425 F19 5:42 ©J Archibald

Potential errors with semaphores

•  Forgetting to take (pend) the semaphore
•  Forgetting to release (post) the semaphore
•  Taking or releasing the wrong semaphore
•  Initializing a semaphore to the wrong value
•  Holding the semaphore too long
•  Priority inversion
•  Deadlock, or deadly embrace

to be discussed shortly

“Every use of semaphores is a bug waiting to happen.” (page 167)

8

425 F19 5:43 ©J Archibald

Priority inversion: the problem

Task C

Task B

Task A

time

in
cr

ea
si

ng
 p

rio
rit

y

Task C takes a
semaphore that it
shares with A.

Task B gets a
message and unblocks.
RTOS switches to B.

Task A gets a
message and unblocks.
RTOS switches to A.

Task A tries to take
semaphore that C holds
and is blocked.

Task B resumes and runs for
a long time; C can’t run to
release the semaphore. Task A
misses a deadline while blocked.

425 F19 5:44 ©J Archibald

Discussion

•  Is this a problem that arises in real systems?
•  Why is it called priority inversion?

–  RTOS scheduling choice reflects static task priority, not true
dynamic importance of tasks

–  Most important task after Task A blocks is really lower priority
task holding resource A is waiting for

425 F19 5:45 ©J Archibald

Priority inversion: solutions

•  Can the higher priority task simply take the desired
resource from the lower priority task?
–  Would violate atomicity requirement in critical sections; not good!

•  Can priority of lower priority task be boosted temporarily?
–  Priority inheritance: RTOS temporarily raises priority of task

holding resource to that of higher priority waiting task
–  How might this work in previous example?

•  RTOS could swap priorities of tasks A and C until C releases
semaphore, then switch priorities back to original values

•  While C holds semaphore and A is blocked, C could be preempted
only by tasks with higher priority than A. (B won’t run.)

425 F19 5:46 ©J Archibald

425 F19 5:47 ©J Archibald

Mars rover bug was priority inversion

•  The commercial RTOS (VxWorks) includes versions of pend
functions with and without priority inheritance

•  Programmer intended to use pend with priority inheritance, but
used other pend by mistake

•  Lengthy, medium priority task to record weather caused a
(blocked) high-priority task to miss a deadline

•  Code detected missed deadline, assumed major malfunction,
shut down the rover, waited for instructions from earth

“Every use of semaphores is a bug waiting to happen.”
425 F19 5:48 ©J Archibald

Another potential problem int a;
int b;
AMXID hSemaphoreA;
AMXID hSemaphoreB;
void vTask1 (void)
{
 ajsmrsv (hSemaphoreA, 0, 0);
 ajsmrsv (hSemaphoreB, 0, 0);
 a = b;
 ajsmrls (hSemaphoreB);
 ajsmrls (hSemaphoreA);
}

void vTask2 (void)
{
 ajsmrsv (hSemaphoreB, 0, 0);
 ajsmrsv (hSemaphoreA, 0, 0);
 b = a;
 ajsmrls (hSemaphoreA);
 ajsmrls (hSemaphoreB);
}

•  Relevant details:
–  2 global variables, each protected by

a semaphore
–  Both semaphores must be obtained

before operations involving both
variables

•  What can go wrong here?
–  Circular dependence, or deadlock

•  Problem is seldom this obvious
–  Usually hidden within nested function

calls; resources acquired at different
points in call sequence

9

425 F19 5:49 ©J Archibald

Deadlock

Definition: a situation wherein two or more competing actions are waiting
for the other to finish, and thus neither ever does
–  Also called deadly embrace

Deadlock can occur only if four conditions are met:
1.  Mutual exclusion: a resource is either available or assigned to a task
2.  Hold and wait: tasks already holding a resource may request new resources
3.  No preemptive stealing: only a task holding a resource may release it
4.  Circular wait: two or more tasks form a circular chain where each process

waits for a resource that the next process in the chain holds
 (“Coffman conditions”, 1971)

425 F19 5:50 ©J Archibald

Legislated deadlock

When two trains approach each other at a crossing, both shall
come to a full stop and neither shall start up again until the
other has gone.

Satirical summary of law said to have been passed by a state
legislature under the control of the “Know-Nothing” party

425 F19 5:51 ©J Archibald

Livelock
•  Similar to deadlock in that no progress is made

–  Key difference: state of the tasks involved constantly change with
respect to each other, none progressing

•  Real-world approximation:
–  Two people meet in narrow corridor, and both move to same side

to let the other pass; both repeatedly switch to the other side, but
they do so at the same time – both are stuck

•  Conceptually, could result from trying to avoid deadlock:
–  Could allow tasks to detect that second desired semaphore is held

by another task, so they release the first and start again
–  Conceptually possible to stay in sync so neither makes progress

425 F19 5:52 ©J Archibald

Starvation

•  Occurs when a task is perpetually denied necessary resources
such as CPU time or memory
–  The task can never do what it needs to do

•  What is responsible for avoiding CPU starvation with
conventional OS?
–  The OS scheduler should ensure that each process gets its turn

•  What is responsible for avoiding CPU starvation with RTOS?
–  Application code
–  What can developer change if one or more tasks are starved?

425 F19 5:53 ©J Archibald

Discussion

•  In RTOS setting
–  What is state of tasks involved in deadlock?
–  What is state of tasks involved in livelock?
–  What is state of task that is CPU starved?

425 F19 5:54 ©J Archibald

Semaphores: odds and ends
•  How many values can a semaphore have?

–  Binary semaphores: 2 values (1 or 0)
–  Counting semaphores: more than 2

•  Some RTOSs support a “mutex semaphore”
–  Automatically addresses priority inversion problem
–  Terminology not consistent across all RTOSs

•  If multiple tasks are waiting for a semaphore, which gets unblocked when
it is released? What options exist?
–  Highest priority task (YAK)
–  Longest waiting task
–  Some RTOSs let you choose between these two

“Every use of semaphores is a bug waiting to happen.”

10

425 F19 5:55 ©J Archibald

Protecting shared data

•  Three distinct alternatives (not counting “programming tricks”):
–  Disabling interrupts

•  Most drastic way to protect data
•  Affects response time of all tasks and ISRs
•  Fast: generally takes just a single instruction to disable/enable
•  Only method that works when sharing data with an ISR

–  Taking semaphores
•  Affects only those tasks that take the same semaphore
•  No impact on tasks that don’t take the semaphore, or on ISRs
•  Creates new possibilities for programming errors

–  Disabling task switches (a.k.a. locking the scheduler)
•  Lock function simply sets global flag, and unlock clears it
•  Scheduler won’t switch tasks if flag set
•  Response time: affects all tasks, but not ISRs
•  Available in many RTOSs (not in YAK, but would be easy to add)

425 F19 5:56 ©J Archibald

Calling restrictions on kernel functions

•  ISRs must never call kernel routines that might block caller
–  Examples: delay, pend

•  But ISRs are allowed to call post functions
–  Assumes that post functions never block the caller

•  Tasks have no comparable restrictions on functions they can call

•  Thought experiment:
–  What would happen if ISR did pend on semaphore in our kernels?

–  Key insight: pend code assumes that it has been called by a task

425 F19 5:57 ©J Archibald

Implementing YKSemPend

void YKSemPend(semaphore)
{
 !! disable interrupts
 if (semaphore.value-- > 0)
 {
 !! enable interrupts
 return;
 }
 !! block calling task: take its TCB out of the ready list
 !! modify TCB, put in pending list
 !! call scheduler
 !! enable interrupts
}

425 F19 5:58 ©J Archibald

Implementing YKSemPost

void YKSemPost(semaphore)
{
 !! disable interrupts
 if (semaphore.value++ >= 0)
 {
 !! enable interrupts
 return;
 }
 !! find TCB of highest priority task waiting for this semaphore
 !! modify TCB of that task, place in ready list
 !! call scheduler (if not in ISR)
 !! enable interrupts
}

425 F19 5:59 ©J Archibald

Semaphore implementation notes
•  Runtime overhead should be low on pend when semaphore available, and

on post when no other tasks waiting
–  Overhead in other cases depends on how ready + blocked lists implemented

•  Initial value of semaphore is set by YKSemCreate
–  Must be chosen carefully

•  Why not call scheduler in YKPost if called in an ISR?
–  More on this shortly (next slide)

–  Why not enable interrupts before calling scheduler?

425 F19 5:60 ©J Archibald

Calling the scheduler
•  Consider this scenario:

–  Task B interrupted, handler calls YKSemPost
–  YKSemPost calls scheduler at end
–  Scheduler decides to run Task A, calls dispatcher

•  Is this a problem?

ISR
Task B
Task A

Handler

Call to YKSemPost
which calls scheduler

11

425 F19 5:61 ©J Archibald

Calling the scheduler
•  Consider this scenario:

–  Task B interrupted, handler calls YKSemPost
–  YKSemPost calls scheduler at end
–  Scheduler decides to run Task A, calls dispatcher

•  Is this a problem?
–  Yes! ISR has not finished: EOI command not executed, nesting level

count not updated

•  Solution?
–  In YAK, do not call scheduler from YKSemPost if in ISR
–  Applies to all post routines

•  In scenario on previous slide, when should scheduler be called?
425 F19 5:62 ©J Archibald

Calling the scheduler

•  What should happen:

ISR
Task B
Task A

Handler

Call to YKExitISR
which calls scheduler

Call to YKSemPost,
no call to scheduler

425 F19 5:63 ©J Archibald

Preemption in YAK
•  Which of these YAK kernel functions must include a call to the

scheduler in their source code?
–  YKNewTask

–  YKDelayTask
–  YKInitialize
–  YKRun
–  YKEnterMutex
–  YKExitMutex
–  YKEnterISR

–  YKExitISR

–  YKScheduler
–  YKDispatcher
–  YKTickHandler
–  YKSemCreate
–  YKSemPend
–  YKSemPost
–  YKQCreate
–  YKQPend
–  YKQPost

425 F19 5:64 ©J Archibald

Reentrancy in YAK

•  Which of these YAK kernel functions must be reentrant?

–  YKNewTask

–  YKDelayTask
–  YKInitialize
–  YKRun
–  YKEnterMutex
–  YKExitMutex
–  YKEnterISR

–  YKExitISR

–  YKScheduler
–  YKDispatcher
–  YKTickHandler
–  YKSemCreate
–  YKSemPend
–  YKSemPost
–  YKQCreate
–  YKQPend
–  YKQPost

425 F19 5:65 ©J Archibald

Reentrancy in YAK

•  What functions in YAK application code must be reentrant?
–  main()?
–  Each task function?
–  Each ISR?
–  Each interrupt handler?
–  Helper functions called by tasks?

425 F19 5:66 ©J Archibald

Calling restrictions in YAK
•  For YAK functions below, is direct call from ISRs/handlers a concern?

–  YKNewTask
–  YKDelayTask
–  YKInitialize
–  YKRun
–  YKEnterMutex
–  YKExitMutex
–  YKEnterISR
–  YKExitISR

–  YKScheduler
–  YKDispatcher
–  YKTickHandler
–  YKSemCreate
–  YKSemPend
–  YKSemPost
–  YKQCreate
–  YKQPend
–  YKQPost

Pick correct
response for each

function

1.  Not a problem
2.  Poor design choice, but should not crash system
3.  Will cause malfunction

12

425 F19 5:67 ©J Archibald

Midterm #1
•  In class, closed book, no calculators.

–  1 page front and back
–  Some true/false, short answer, multiple choice, circle all correct, etc.

•  Recommendations: how to prepare
–  Study midterm #1 and solution from F18 on class webpage
–  Review text, paying careful attention to definitions
–  Review slides on material not directly covered in text
–  Review YAK specs, application code from labs
–  Review C topics (from HW, class discussion)
–  Review your design notes and code for your kernel
–  Review case study (Athens Affair)
–  Study list of review topics on class webpage

425 F19 5:68 ©J Archibald

Midterm #1 review topics
•  Book and lecture topics

–  design issues in embedded real-time systems
–  critical performance issues in embedded real-time systems
–  memory address space conventions, RAM and ROM
–  watchdog timers
–  interrupt mechanisms, hardware and software
–  saving and restoring context
–  the shared data problem
–  atomicity and critical sections
–  interrupt latency
–  alternatives to disabling interrupts
–  software architectures: alternatives and tradeoffs

•  round robin or polled-loop architectures
•  round robin with interrupts
•  function-queue scheduling
•  real-time operating system

425 F19 5:69 ©J Archibald

Midterm #1 review topics
•  Book and lecture topics (continued)

–  tasks, task states and transitions, multitasking
–  typical RTOS functions

•  creating tasks, semaphores, etc.
•  deleting tasks
•  delaying tasks
•  changing task priority
•  inter-task communication and synchronization

–  RTOS data structures: task control blocks (TCBs)
–  scheduling, alternative scheduling policies
–  priorities among tasks, ISR relative to tasks
–  preemption, how it is accomplished
–  shared data problem, reentrant code
–  C variable storage
–  semaphores, typical functionality, potential problems
–  semaphores: signaling vs. protecting shared data
–  semaphore variants 425 F19 5:70 ©J Archibald

Midterm #1 review topics
•  Book and lecture topics (continued)

–  deadlock, livelock, starvation
–  priority inversion, priority inheritance
–  context switching, saving, restoring
–  role and functionality of dispatcher
–  challenges of designing and debugging real-time system code

•  Lab and HW basics
–  essential C topics
–  implementation of C constructs in assembly
–  stacks, stack frames, conventions in compiled C code
–  make files
–  ISR essentials
–  YAK functions and conventions
–  saving, restoring context in YAK

425 F19 5:71 ©J Archibald

Midterm #1 review topics
•  Lab and HW basics (continued)

–  8086-based tools (compiler, assembler): general usage
–  emu86 simulator: usage, debugging features
–  conventions in compiled C: stack frames, parameters, return values
–  8086 instructions, operations

•  enabling, disabling interrupts (IMR and flag register)
•  CPU actions on interrupt, iret
•  interrupt jump table
•  supporting nested interrupts

•  Additional reading: case study
–  Operational details of underlying technology
–  Facts of specific case study (what happened and why important)
–  Implications (technological, social, political, etc.)

425 F19 5:72 ©J Archibald

Exam issues: clarity
•  Be precise in your language on essay and short answer questions

–  Can a task “interrupt” another task?
–  Can a task “block” another task?
–  Is task function ever “called”?
–  Is ISR ever “called”?
–  Is it “deadlock” if a (possibly buggy) task holds a semaphore too long or

never gives it up?
–  Is “code” interchangeable with “global variables”?

•  Example: “Don’t use code non-atomically.”

–  Are variables “controlled” by semaphores?

•  Careful writing is always important

13

425 F19 5:73 ©J Archibald

Problems from ends of chapters

•  Recommendation:
–  Study those from Chapters 4-6

•  Let’s look at some examples

425 F19 5:74 ©J Archibald

Problem 6.2

Is this function reentrant? int strlen (char *p_sz)
{
 int iLength;
 iLength = 0;
 while (*p_sz != ‘\0’)
 {
 ++iLength;
 ++p_sz;
 }
 return iLength;
}

425 F19 5:75 ©J Archibald

Problem 6.3

Which of the numbered lines in
the function would lead you to
conclude that this function is not
reentrant?

static int iCount;

void vNotReentrant (int x, int *p)
{
 int y;

 y = x * 2; /* line 1 */
 ++p; /* line 2 */
 p = 123; / line 3 */
 iCount += 234; /* line 4 */
 printf(“New count: %d”, x); /* line 5 */

}

425 F19 5:76 ©J Archibald

Problem 6.6

•  For each of the following situations, discuss which of the three shared-
data protection mechanisms seems most likely to be best and explain
why.
–  Task M and task N share an int array, and each must often update many

elements in the array.

–  Task P shares a single char variable with one of the interrupt routines.

425 F19 5:77 ©J Archibald

Problem 6.8

Assume that this code is the only code in the
system that uses the variable
iSharedDeviceXData. The routine
vGetDataFromDeviceX is an interrupt
routine. Now suppose that instead of
disabling all interrupts in vTaskZ, as shown,
we disable only the device X interrupt,
allowing all other interrupts. Will this still
protect the iSharedDeviceXData variable? If
not, why not? If so, what are the advantages
(if any) and disadvantages (if any) of doing
this compared to disabling all interrupts?

int iSharedDeviceXData;

void interrupt vGetDataFromDeviceX (void)
{

 iSharedDeviceXData =
 !! Get data from device X hardware
 !! reset hardware

}

void vTaskZ (void)
{
 int iTemp;

 while (FOREVER)
 {
 /* other code here */
 !! disable interrupts
 iTemp = iSharedDeviceXData;
 !! enable interrupts
 !! compute with iTemp
 }

}
425 F19 5:78 ©J Archibald

Problem 6.10

Consider this statement: “In a nonpreemptive RTOS, tasks cannot
‘interrupt’ one another; therefore there are no data-sharing problems
among tasks.”

Do you agree?

14

425 F19 5:79 ©J Archibald

Problem 5.1

Consider a system that controls traffic lights at a major intersection. It
reads from sensors that notice the presence of cars and pedestrians, it has a
timer, and it turns the lights red and green appropriately. What [software]
architecture might you use for such a system? Why? What other
information, if any, might influence your decision?

425 F19 5:80 ©J Archibald

static int iSeconds, iMinutes, iHours;

void interrupt vUpdateTime (void)
{

 ++iSeconds;
 if (iSeconds >= 60)
 {
 iSeconds = 0;
 ++iMinutes;
 if (iMinutes >= 60)
 {
 iMinutes = 0;
 ++iHours;
 if (iHours >= 24)
 iHours = 0;
 }
 }
 !! Deal with HW

}

void vSetTimeZone (int iZoneOld, int iZoneNew)
{

 int iHoursTemp;

 /* Get current hours */
 disable();
 iHoursTemp = iHours;
 enable();

 !! adjust iHoursTemp for new time zone
 !! adjust for daylight savings time also

 /* save the new hours value */
 disable();
 iHours = iHoursTemp;
 enable();
}

Code based on Figure 4.17

Problem 4.1: Does this approach avoid a shared data problem?

425 F19 5:81 ©J Archibald

Problem 4.2: The code below has a shared data bug.

static long int lSecondsToday;

void interrupt vUpdateTime (void)
{

 ...
 ++lSecondsToday;
 if (lSecondsToday == 60 * 60 * 24)
 lSecondsToday = 0L;
 ...

}

long lSecondsSinceMidnight(void)
{

 return (lSecondsToday);
}

(a) How far off can return value of function
be if sizeof(long) is 32 and word size is 16
bits?

(b) How far off can return value of function
be if sizeof(long) is 32 and word size is 8
bits?

425 F19 5:82 ©J Archibald

Problem 4.3: What additional bug lurks in this code, even
if registers are 32 bits in length?

static long int lSecondsToday;

void interrupt vUpdateTime (void)
{

 ...
 ++lSecondsToday;
 if (lSecondsToday == 60 * 60 * 24)
 lSecondsToday = 0L;
 ...

}

long lSecondsSinceMidnight(void)
{

 return (lSecondsToday);
}

What can happen if system has another
interrupt that is higher priority than timer
interrupt for vUpdateTime and that calls
lSecondsSinceMidnight?

425 F19 5:83 ©J Archibald

Problem 4.5: The task and interrupt code
share the fTaskCodeUsingTempsB
variable.

Is the task’s use of this variable
(fTaskCodeUsingTempsB) atomic?
Does it need to be atomic for the code to
work correctly?

static int iTemperaturesA[2], iTemperaturesB[2];
static BOOL fTaskCodeUsingTempsB = FALSE;
void interrupt vReadTemperatures (void) {

 if (fTaskCodeUsingTempsB)
 {

 iTemperaturesA[0] = !! read in value from HW
 iTemperaturesA[1] = !! read in value from HW
 }
 else
 {
 iTemperaturesB[0] = !! read in value from HW
 iTemperaturesB[1] = !! read in value from HW
 }

}

void main (void) {

 while (TRUE)
 {
 if (fTaskCodeUsingTempsB)
 if (iTemperaturesB[0] != iTemperaturesB[1])
 !! Set off howling alarm;
 else
 if (iTemperaturesA[0] != iTemperaturesA[1])
 !! Set off howling alarm;
 fTaskCodeUsingTempsB = !fTaskCodeUsingTempsB;

 }
}

425 F19 5:84 ©J Archibald

int iQueue[100];
int iHead = 0; /* place to add next item */
int iTail = 0; /* place to read next item */
void interrupt SourceInterrupt(void)
{
 if ((iHead+1 == Tail) || (iHead == 99 && iTail == 0))
 { /* if queue is full, overwrite oldest */
 ++iTail;
 if (iTail == 100)
 iTail = 0;
 }
 iQueue[iHead] = !!next value;
 ++iHead;
 if (iHead==100)
 iHead = 0;
}

void SinkTask(void)
{
 int iValue;
 while (TRUE)
 if (iTail != iHead)
 { /* if queue has entry, process it */
 iValue = iQueue[iTail];
 ++iTail;
 if (iTail == 100)
 iTail = 0;
 !! Do something with iValue;
 }
}

Problem 4.6: where is “very nasty bug”?

Code from Figure 4.18

15

425 F19 5:85 ©J Archibald

int iQueue[100];
int iHead = 0; /* place to add next item */
int iTail = 0; /* place to read next item */
void interrupt SourceInterrupt(void)
{
 if ((iHead+1 == Tail) || (iHead == 99 && iTail == 0))
 { /* if queue is full, overwrite oldest */
 ++iTail;
 if (iTail == 100)
 iTail = 0;
 }
 iQueue[iHead] = !!next value;
 ++iHead;
 if (iHead==100)
 iHead = 0;
}

void SinkTask(void)
{
 int iValue;
 while (TRUE)
 if (iTail != iHead)
 { /* if queue has entry, process it */
 iValue = iQueue[iTail];
 ++iTail;
 if (iTail == 100)
 iTail = 0;
 !! Do something with iValue;
 }
}

Problem 4.6: where is “very nasty bug”?

Code from Figure 4.18

Possible scenario
•  Queue is full, iHead=98, iTail=99
•  Task executes ++iTail (so iTail=100)
•  Back-to-back interrupts occur
•  Start of first: iHead=98, iTail=100
•  End of first: iHead=99, iTail=100
•  End of second: iHead=0, iTail=101

•  iTail is never reset, increases w/o limit

In previous version, head was modified
only in ISR, tail only modified in main.
Here, ISR can modify both head and tail.

