
1 

425 F19 4:1 ©J Archibald 

System organization 

A core set  
of essential 
services 

Key: who writes software closest to hardware?  

System hardware 

RTOS / Kernel 

System hardware 

Application code 

RTOS Conventional OS 

Operating 
system 

ISRs Application 
code 

ISRs 

425 F19 4:2 ©J Archibald 

“RTOS” vs. “kernel” 

•  For some,  
RTOS = kernel = real-time kernel (RTK) 

•  For others, 
RTOS is more than a kernel 
–  RTOS includes network support, debugging tools, memory 

management 
–  Kernel includes only most basic services 

•  In our book and this class: 
–  RTOS and kernel are synonymous, used interchangeably 
 

425 F19 4:3 ©J Archibald 

RTOS application code: example 
 
•  An RTOS is a set of functions called from application code 

void main(void) 
{ 

 /* Initialize (but don’t start) the RTOS */ 
 InitRTOS(); 
  
 /* Tell the RTOS about our tasks */ 
 StartTask(RespondToButton, HIGH_PRIORITY); 
 StartTask(CalculateTankLevels, LOW_PRIORITY); 
  
 /* Actually start the RTOS.  (This function never returns.) */ 
 StartRTOS(); 

} 

425 F19 4:4 ©J Archibald 

Example:  
Kernel services in µC/OS 

OSInit() 
OSIntEnter() 
OSIntExit() 
OSMboxCreate() 
OSMboxPend() 
OSMboxPost() 
OSQCreate() 
OSQPend() 
OSQPost() 
OSSchedLock() 
OSSchedUnlock() 

OS_ENTER_CRITICAL() 

OSSemCreate() 
OSSemPend() 
OSSemPost() 
OSStart() 
OSTaskChangePrio() 
OSTaskCreate() 
OSTaskDel() 
OSTimeDly() 
OSTimeGet() 
OSTimeSet() 
OSTimeTick() 

OS_EXIT_CRITICAL() 

425 F19 4:5 ©J Archibald 

RTOS 
•  Application code and RTOS are 

compiled and linked together. 
•  The application runs first and 

calls the RTOS. 
•  RTOS runs only when called by 

application code. 
•  Dedicated to a single embedded 

application. 
•  No file system, doesn’t handle 

I/O, no user interface. 

•  Should run forever without 
crashing. 

Comparison 
Windows/Unix 

•  Application code and OS are 
separate entities. 

•  The OS runs first and makes the 
application run. 

•  OS runs regularly as separate 
entity in separate mode. 

•  Multiple processes, general 
purpose. 

•  File system, I/O systems, user 
interface. 

•  Occasionally system hangs.  

425 F19 4:6 ©J Archibald 

Commercial RTOS Choices 
Debugged, with nice tools 

VxWorks VRTX pSOS 

Nucleus C Executive LynxOS 

QNX MultiTask! AMX 



2 

425 F19 4:7 ©J Archibald 

So... why write an RTOS? 

•  To gain insight and experience: 
–  Insight into essential operations in computer systems 
–  Insight into challenges of parallel programming: threads, multi-cores 
–  Experience with design, coding, and debugging 

•  Bottom line 
–  Good preparation for a variety of careers in computing 

425 F19 4:8 ©J Archibald 

RTOS essentials: tasks 

•  The main building blocks of application software written for an RTOS 

•  Tasks run independently; execution order determined by RTOS 

•  Each task has its own private context: 
–  register values 
–  program counter 
–  stack 

•  All other data is shared by all tasks 
•  Tasks are more like threads than processes 

Task 
1 Task 

4 

Task 
2 

Task 
5 

Task 
3 

425 F19 4:9 ©J Archibald 

Task management 

•  Each task has an associated state and a priority 
•  A blocked task is waiting for something before it runs again 
•  The scheduler always selects the highest priority ready task  

 

Ready Running Blocked 

Create Task 
Schedule Task 

Block Task 

Unblock Task 

Only one task can be 
running at a time 

Tasks are blocked when 
they request something 
that is not yet available 

Preempt Task 

Task States and Transitions 
425 F19 4:10 ©J Archibald 

Preemption 

•  A preemptive RTOS will stop the execution of a lower priority task as 
soon as a higher-priority task becomes ready to run 
–  Example: the highest priority task may unblock when it receives a message 

that it is waiting for 

•  A non-preemptive RTOS will stop a task only when that task blocks or 
delays itself (e.g., by calling a pend or delay RTOS function) 
 

•  The kernel we implement this semester is preemptive 

425 F19 4:11 ©J Archibald 

Task states, transitions revisited 

Ready Running Interrupted Blocked 

Create Task 

Interrupt 

Pend, Delay 
Preempt Task 

Schedule Task 
Post, Tick 

Return 

(Block Task) 

(Unblock Task) 
(Resume Task) 

Preempt Task 

What is required for kernel to manage this? 
425 F19 4:12 ©J Archibald 

Internal task representation 

•  OS data structure for each task: Task Control Block (TCB)  
–  priority 
–  state 
–  address of next instruction to execute in task code (IP) 
–  address of current top of task stack (SP) 
–  other context and status 

•  Kernel code initializes, maintains, and uses TCB contents 
–  Never accessed directly by task code 

•  Important terminology for our discussions and labs: 
–  Ready list: TCBs of all tasks in Ready state 
–  Suspended list: TCBs of all tasks in Blocked state 



3 

425 F19 4:13 ©J Archibald 

YAK 
•  The name of the RTOS kernel that you develop in labs 4-7 

–  Origin of name lost to antiquity 
–  Yet Another Kernel?   Y Academic Kernel?   YAK Alternative Kernel? 

•  YAK specification defines the application code interface 
–  The set of functions that tasks, ISRs can call 
–  Function descriptions, details are on the class web pages 
–  Read the details carefully – and repeatedly! 

425 F19 4:14 ©J Archibald 

Sample YAK kernel functions 

YKNewTask  Creates a new task 

YKDelayTask  Task delays itself for a fixed time 

YKInitialize  Initializes kernel data structures 

YKRun  Starts the application: first task runs 

YKEnterMutex  Disables interrupts 

YKExitMutex  Enables interrupts 

YKScheduler  Picks highest priority task to run 

425 F19 4:15 ©J Archibald 

Overview: Labs 4-7 
•  You are given application code, operational specs 
•  You implement the required YAK functions 

–  Interface and functionality are specified 
–  Lots of design, implementation options – with consequences! 

•  Many issues to consider; you should proceed carefully 
–  From here (lab 4a) on out, must work in teams of two 
–  Exceptions must be approved in advance 

•  In class, we’ll discuss many details, challenges and options 
–  Important to understand issues thoroughly before writing code 

425 F19 4:16 ©J Archibald 

Lab 4 
•  Design your YAK kernel, implement a core subset 

–  Enough to run application code provided 
–  Divided into 4 parts, each requiring new functionality 

•  Some coding in C, some in assembly; total size not overwhelming 
–  My code size for Lab 4, including comments, white space, etc:  

•  354 lines of C code 
•  175 lines of assembly 

•  Modify your ISRs and interrupt handlers from Lab 3 
–  Required changes are minor, usually adding a few function calls 

•  Familiarize yourself with debugging capabilities of simulator 
–  Goal: when it doesn’t work, discover why as quickly as possible 

425 F19 4:17 ©J Archibald 

Lab 4a: design 
•  After  

–  carefully reading all the information available, 
–  studying the application code (for parts b-d), and 
–  thinking about all issues involved; 

•  You and partner submit (via Learning Suite) 
–  pseudo-code for all required functions, and 
–  answers to 21 questions about how you will implement your kernel 

Examples: 
•  Where and how will contexts be saved? 
•  When and how will contexts be restored? 
•  How will scheduler and dispatcher really work? 
•  What will your TCB and associated data structures look like?  
•  How will you handle a variety of special cases? 

425 F19 4:18 ©J Archibald 

Purpose of Lab 4a 

•  Make you think through the implementation issues before you code 

•  Required detail goes beyond lectures, slides, book 

•  Your submission should demonstrate that you have carefully considered the 
tricky implementation issues in your kernel 

•  Observation: TAs cannot catch all potential problems in your submission 

–  Ternary feedback: (1) on-target, (2) a few loose ends, (3) major problems 

–  You benefit from doing a careful design: effort here saves you time later on 

8 hours of programming can save you 10 minutes with pencil and paper. 
    Mike Goodrich 



4 

425 F19 4:19 ©J Archibald 

Lab 4b application 

•  Source code on next slides has 3 tasks 
–  main() creates Task A 

–  Task A creates Task B (lower priority) and Task C (higher priority) 

–  Once Task C is created, only Task C should run 

•  Easy to see from output when it works, when it doesn’t 

•  It must run correctly with your YAK code, without crashing from 
keypress and timer interrupts, etc. 

•  Application code will help you understand what your kernel must do 

425 F19 4:20 ©J Archibald 

#include "clib.h" 
 
#define ASTACKSIZE 256       /* Size of stack */ 
#define BSTACKSIZE 256 
#define CSTACKSIZE 256 
 
int AStk[ASTACKSIZE];           /* Stack space */ 
int BStk[BSTACKSIZE]; 
int CStk[CSTACKSIZE]; 
 
void ATask(void);                     /* Function prototypes */ 
void BTask(void); 
void CTask(void); 
 
void YKInitialize(void);        
void YKRun(void); 
void YKNewTask(void (* task)(void), void *taskstack, unsigned char priority); 
void YKEnterMutex(void); 
void YKExitMutex(void); 
 
extern unsigned YKCtxSwCount; 
 
void main(void) 
{ 
    YKInitialize(); 
    printString("Creating task A...\n"); 
    YKNewTask(ATask, (void *) &AStk[ASTACKSIZE], 5); 
    printString("Starting kernel...\n"); 
    YKRun(); 
} 

Lab 4b application code 
(must be run without modification) 

425 F19 4:21 ©J Archibald 

void ATask(void) 
{ 
    printString("Task A started!\n"); 
    printString("Creating low priority task B...\n"); 
    YKNewTask(BTask, (void *)  
           &BStk[BSTACKSIZE], 7); 
    printString("Creating task C...\n"); 
    YKNewTask(CTask, (void *)  
           &CStk[CSTACKSIZE], 2); 
 
    printString("Task A is still running! Oh no! Task                   
            A was supposed to stop.\n"); 
    exit(0); 
} 
 
void BTask(void) 
{ 
    printString("Task B started! Oh no! Task B  
          wasn't supposed to run.\n"); 
    exit(0); 
} 
 

Lab 4b application code 

void CTask(void) 
{ 
    int count; 
    unsigned numCtxSwitches; 
 
    YKEnterMutex(); 
    numCtxSwitches = YKCtxSwCount; 
    YKExitMutex(); 
 
    printString("Task C started after "); 
    printUInt(numCtxSwitches); 
    printString(" context switches!\n"); 
 
    while (1) { 
        printString("Executing in task C.\n"); 
        for (count = 0; count < 5000; count++); 
    } 
} 

425 F19 4:22 ©J Archibald 

Creating task A...  
Starting kernel...  
Task A started!  
Creating low priority task B...  
Creating task C...  
Task C started after 2 context switches! Executing 
in task C.  
 
TICK 1  
Executing in task C.  
 
TICK 2  
 
TICK 3  
Executing in task C.  
 
TICK 4  
Executing in task C.  
. 
. 
. 

Lab 4b output 

425 F19 4:23 ©J Archibald 

Lab 4c: new features 

•  The only task defined in the application code delays itself 
–  What runs while task is delayed? 

•  In YAK, a low priority background task is always ready to run: 
–  YAK’s idle task: created by kernel 
–  Once initialized, ready list is never empty; simplifies scheduler, list handling  
–  Idle task never blocks; just increments YKIdleCount in a loop 

425 F19 4:24 ©J Archibald 

#include "clib.h" 
 
#define STACKSIZE 256 
 
int TaskStack[STACKSIZE];      /* Space for stack */ 
 
void Task(void);               /* Function prototypes */ 
 
void YKInitialize(void); 
void YKRun(void); 
void YKNewTask(void (* task)(void), void *taskStack,  
                                       unsigned char priority); 
void YKDelayTask(int count); 
void YKEnterMutex(void); 
void YKExitMutex(void); 
 
extern unsigned YKIdleCount; 
extern unsigned YKCtxSwCount; 
 
void main(void) 
{ 
    YKInitialize();    
    printString("Creating task...\n"); 
    YKNewTask(Task, (void *) &TaskStack[STACKSIZE], 0); 
    printString("Starting kernel...\n"); 
    YKRun(); 
} 

Lab 4c application code 
void Task(void) 
{ 
    unsigned idleCount; 
    unsigned numCtxSwitches; 
 
    printString("Task started.\n"); 
    while (1) 
    { 
        printString("Delaying task...\n"); 
 
        YKDelayTask(2); 
 
        YKEnterMutex(); 
        numCtxSwitches = YKCtxSwCount; 
        idleCount = YKIdleCount; 
        YKIdleCount = 0; 
        YKExitMutex(); 
 
        printString("Task running after "); 
        printUInt(numCtxSwitches); 
        printString(" context switches! YKIdleCount is "); 
        printUInt(idleCount); 
        printString(".\n"); 
    } 
} 



5 

425 F19 4:25 ©J Archibald 

Creating task...  
Starting kernel...  
Task started.  
Delaying task...  
 
TICK 1  
 
TICK 2  
Task running after 3 context switches! YKIdleCount is 2330.  
Delaying task...  
 
TICK 3  
 
TICK 4  
Task running after 5 context switches! YKIdleCount is 2328.  
Delaying task...  
 
TICK 5  
 
TICK 6  
Task running after 7 context switches! YKIdleCount is 2328.  
Delaying task...  

Lab 4c output 

425 F19 4:26 ©J Archibald 

Lab 4d: new features 

•  main() defines four tasks 
–  Each delays itself by a different amount 

•  Results in lots of context switches 

–  More extensive testing of context save and restore mechanisms 

425 F19 4:27 ©J Archibald 

#include "clib.h" 
 
#define ASTACKSIZE 256 
#define BSTACKSIZE 256 
#define CSTACKSIZE 256 
#define DSTACKSIZE 256 
 
int AStk[ASTACKSIZE];        /* Space for each stack  */ 
int BStk[BSTACKSIZE]; 
int CStk[CSTACKSIZE]; 
int DStk[DSTACKSIZE]; 
 
void ATask(void);               /* Function prototypes */ 
void BTask(void); 
void CTask(void); 
void DTask(void); 
 
void YKInitialize(void); 
void YKRun(void); 
void YKNewTask(void (* task)(void), void *taskstack,  
                                         unsigned char priority); 
void YKDelayTask(int count); 
 
void main(void) 
{ 
    YKInitialize(); 
    printString("Creating tasks...\n"); 
    YKNewTask(ATask, (void *) &AStk[ASTACKSIZE], 3); 
    YKNewTask(BTask, (void *) &BStk[BSTACKSIZE], 5); 
    YKNewTask(CTask, (void *) &CStk[CSTACKSIZE], 7); 
    YKNewTask(DTask, (void *) &DStk[DSTACKSIZE], 8); 
    printString("Starting kernel...\n"); 
    YKRun(); 
} 

void ATask(void)  { 
    printString("Task A started.\n"); 
    while (1)    { 
        printString("Task A, delaying 2.\n"); 
        YKDelayTask(2); 
    } 
} 
 
void BTask(void)  { 
    printString("Task B started.\n"); 
    while (1)    { 
        printString("Task B, delaying 3.\n"); 
        YKDelayTask(3); 
    } 
} 
 
void CTask(void)   { 
    printString("Task C started.\n"); 
    while (1)    { 
        printString("Task C, delaying 5.\n"); 
        YKDelayTask(5); 
    } 
} 
 
void DTask(void)  { 
    printString("Task D started.\n"); 
    while (1)    { 
        printString("Task D, delaying 10.\n"); 
        YKDelayTask(10); 
    } 
} 

Lab 4d application code 

425 F19 4:28 ©J Archibald 

Creating tasks... 
Starting kernel... 
Task A started.  
Task A, delaying 2.  
Task B started.  
Task B, delaying 3.  
Task C started.  
Task C, delaying 5.  
Task D started.  
Task D, delaying 10.  
 
TICK 1  
 
TICK 2  
Task A, delaying 2.  
 
TICK 3  
Task B, delaying 3.  
 
TICK 4  
Task A, delaying 2.  

TICK 5  
Task C, delaying 5.  
 
TICK 6  
Task A, delaying 2.  
Task B, delaying 3.  
 
TICK 7  
 
TICK 8  
Task A, delaying 2.  
 
TICK 9  
Task B, delaying 3.  
 
TICK 10  
Task A, delaying 2.  
Task C, delaying 5.  
Task D, delaying 10.  
 
TICK 11 
. 
. 
.  

Lab 4d output 

425 F19 4:29 ©J Archibald 

Kernel variables: 
YKCtxSwCount  Number of context switches 
YKIdleCount  Incremented in idle task 

Kernel functions: 
YKInitialize  Initializes global variables, kernel data structures 
YKRun  Starts actual execution of user code (tasks) 
YKEnterMutex  Disables interrupts 
YKExitMutex  Enables interrupts 
YKEnterISR  Called on entry to ISR 
YKExitISR  Called on exit from ISR 
YKScheduler  Determines the highest priority ready task 
YKDispatcher  Causes the designated task to execute 
YKNewTask  Creates a new task 
YKDelayTask  Delays a task for specified number of clock ticks 
YKTickHandler  The kernel's timer tick interrupt handler 
YKIdleTask  Lowest priority task, never blocks 

Lab 4 kernel components 

425 F19 4:30 ©J Archibald 

RTOS essentials: scheduler 

•  The scheduler is the kernel routine that decides what task to run next 
•  Each task has: 

–  A unique priority 
–  A state  (e.g., running, ready, blocked, interrupted, ...) 

•  The scheduler always selects the highest priority ready task 

•  Once the next task has been selected, the scheduler calls the dispatcher 
to make the task run 



6 

425 F19 4:31 ©J Archibald 

A simple scheduler 

•  Schedulers in an RTOS are simple-minded 
–  In YAK, the number of ready tasks is always ≥ 1 

–  It is not hard to find the one with highest priority 

•  Unlike schedulers in Windows/Linux/Unix, the RTOS scheduler 
makes no attempt to be fair 
–  Low priority tasks can be starved; CPU can be hogged  

–  Responsibility of application designer (not RTOS!) to make sure all tasks 
get the CPU time they need 

425 F19 4:32 ©J Archibald 

An efficient approach 

•  If the TCBs of ready tasks are kept in priority order in a queue, the 
scheduler’s job is trivial: 
–  Always pick the task at the front of the queue 

priority 90 

priority 75 

priority 35 

priority 20 

Ready List 

D
ec

re
as

in
g 

pr
io

rit
y 

Pick this task 
to run next 

425 F19 4:33 ©J Archibald 

The dispatcher 

•  The scheduler’s work is easy; it calls the dispatcher to do the hard part: 
–  Actually cause the selected task to run 
–  Possibly save context of previously running task 

•  Tricky because it must handle all of the low-level details: 
–  Saving and restoring registers, including IP and SP 
–  Stack frame, TCB manipulation 

•  Must be written in assembly 
–  You can’t save/restore registers or manipulate stack frames in C 

425 F19 4:34 ©J Archibald 

Task dispatch 

•  How does dispatcher actually cause a task to run? 
•  What 8086 instruction should be used to transfer control? 

–  Instructions that modify the instruction pointer in 8086: 
•  call 
•  ret 
•  int 
•  iret 
•  jmp 
•  jxx      (conditional jumps) 

–  Which is best candidate?  Does interrupt status matter? 

425 F19 4:35 ©J Archibald 

Task dispatch, cont. 

•  Interrupt status is crucial 
–  Interrupts almost certainly off in scheduler and dispatcher 

•  Critical section: bad place to get an interrupt, do possible context switch 
–  Need to be turned back on simultaneously with transfer of control to task  

•  Thought experiment: what can go wrong if they do not happen at same time? 
•  Dispatcher is tricky, but not lengthy: 

–  My dispatcher consists of just 19 instructions 
–  It conditionally calls a subroutine to save context (21 instructions long, also 

called by ISRs) 

425 F19 4:36 ©J Archibald 

Calling the scheduler 

•  Key idea: scheduler must be called in all kernel code which could 
change the state of any task, before returning to task code 

–  This provides preemption: the highest priority ready task will always be the 
next task to run 

•  In YAK, the scheduler must be called: 
1.  In YKRun, to run the first task 
2.  At end of every kernel function that can cause a task to block 

   (Examples: YKDelayTask, YKSemPend, YKQPend) 
3.  At end of every kernel function that can cause a task to become ready 

   (Examples: YKNewTask, YKSemPost, YKQPost) 
4.  In YKExitISR, called near end of each ISR 

   (Handler may have called a kernel function that unblocked a task) 



7 

425 F19 4:37 ©J Archibald 

Task states revisited 

Ready Running Interrupted Blocked 

Create Task 

Interrupt 

Pend, Delay 
Preempt Task 

Schedule Task 
Post, Tick 

Return 

(Block Task) 

(Unblock Task) 
(Resume Task) 

Preempt Task 

425 F19 4:38 ©J Archibald 

Scheduler questions 

•  How does the scheduler know when the running task blocks? 
•  How does the scheduler know when a task is unblocked? 

•  What happens if all tasks are blocked? 

•  What if two tasks with the same priority are ready to run? 

•  If one task is running, and another higher-priority task is unblocked, does 
the running task get stopped right away? 

(From text, pp. 141-142) 

425 F19 4:39 ©J Archibald 

RTOS essentials:  
Possible TCB entries 

•  Task name or ID 
•  Task priority 

•  Task state (Running, Ready, Blocked, Delayed, etc.) 

•  Delay count 

•  Stack pointer (top of stack) for this task  

•  Program counter (address of next task instruction to run) 

•  Space to store register context of task 

•  Pointers to link TCBs (to form lists) 

425 F19 4:40 ©J Archibald 

Context 
•  Each task has its own private context 

–  Register values 
–  Stack (including all stack-based variables) 
–  Program counter 

•  Register context must be saved whenever a task stops running, and it must be 
restored by dispatcher when it runs again 

•  The tricky part: context must be saved and restored consistently regardless of 
what caused the task to be suspended 

•  What events can cause task to stop running? 
–  Something the task did 
–  Something done by something else in the system  (Task?  Interrupt handler?)  

•  How/where might you save context? 
–  Options: in TCB or on task’s stack 
–  Observation: the code to save context must be written in assembly 

425 F19 4:41 ©J Archibald 

Saving private context 
•  Hardest part of lab 4: devising a way to save context consistently and reliably 

•  Critical questions to address in your design: 
–  When (in call sequence) will task context be saved? 

1.  If suspended by ISR? 
2.  If suspended by action of the task? 

–  How do you obtain a return address and where is that address saved? 
–  What stack pointer value do you save in the TCB, and when is it saved? 

•  Suggestions: 
–  Think this through carefully! 
–  Draw pictures!  Track stack frame progress, TCB state 
–  Document your design!  Put something down in writing 
–  Convince your skeptical partner that your approach will work! 

425 F19 4:42 ©J Archibald 

Challenges 
•  Context is a snapshot of all values associated with a task at some 

instant in time 
•  Consider saved context for task A 

–  Stored (in some combination) in TCB, on stack 

 

–  Ideally, state will be consistent regardless of why A last stopped running, 
making it easier to run A again the next time 

•  Why is this challenging? 
•  Let’s consider three cases 

A’s 
TCB 

A’s 
Stack sp A’s 

Code 
pc 



8 

425 F19 4:43 ©J Archibald 

•  What happens when a task runs for the first time? 
–  Is there a context to restore? 

•  Consider two options: 
1.  Treat as special case (e.g. use flag in TCB) with special dispatcher 
2.  Treat same as other cases by storing initial context before task runs the 

first time (key values: SP, IP, flags) 

A’s 
TCB 

A’s 
Stack 

Saving context: case 1 

425 F19 4:44 ©J Archibald 

Saving context: case 2 

•  What happens when a task is interrupted? 
–  Suppose A is running, tick interrupt makes higher priority task B ready 

•  Scenario: B called YKDelayTask when it last ran 
–  How will A’s context be saved? 

•  Key question to consider: what did ISR already do? 

A’s 
TCB 

A’s 
Stack 

425 F19 4:45 ©J Archibald 

Case 2: piece by piece 

•  A is running 

A’s 
TCB 

A’s 
Stack 

A’s 
Stack 
Frame 

? 
sp 

top of  
stack 

? 
pc 

425 F19 4:46 ©J Archibald 

Case 2: piece by piece 

•  A is running 
•  A is interrupted by tick ISR 

A’s 
TCB 

A’s 
Stack 

A’s 
Stack 
Frame 

? 
sp 

top of  
stack 

ISR-saved  
context 

? 
pc 

425 F19 4:47 ©J Archibald 

Case 2: piece by piece 

•  A is running 
•  A is interrupted by tick ISR 
•  Tick ISR calls YKTickHandler, which 

makes B “ready” and returns 

A’s 
TCB 

A’s 
Stack 

A’s 
Stack 
Frame 

? 
sp 

top of  
stack 

ISR-saved  
context 

TickHandler 
frame 

? 
pc 

425 F19 4:48 ©J Archibald 

Case 2: piece by piece 

•  A is running 
•  A is interrupted by tick ISR 
•  Tick ISR calls YKTickHandler, which 

makes B “ready” and returns 
•  Tick ISR calls YKExitISR 

A’s 
TCB 

A’s 
Stack 

A’s 
Stack 
Frame 

? 
sp 

top of  
stack 

ISR-saved  
context 

YKExitISR 
frame 

? 
pc 



9 

425 F19 4:49 ©J Archibald 

Case 2: piece by piece 

•  A is running 
•  A is interrupted by tick ISR 
•  Tick ISR calls YKTickHandler, which 

makes B “ready” and returns 
•  Tick ISR calls YKExitISR 
•  YKExitISR calls Scheduler A’s 

TCB 

A’s 
Stack 

A’s 
Stack 
Frame 

? 
sp 

top of  
stack 

ISR-saved  
context 

YKExitISR 
frame 

Scheduler 
frame 

? 
pc 

425 F19 4:50 ©J Archibald 

Case 2: piece by piece 

•  A is running 
•  A is interrupted by tick ISR 
•  Tick ISR calls YKTickHandler, which 

makes B “ready” and returns 
•  Tick ISR calls YKExitISR 
•  YKExitISR calls Scheduler 
•  Scheduler calls Dispatcher 

A’s 
TCB 

A’s 
Stack 

A’s 
Stack 
Frame 

? 
sp 

top of  
stack 

ISR-saved  
context 

YKExitISR 
frame 

Scheduler 
frame 

Dispatcher 
frame 

? 
pc 

425 F19 4:51 ©J Archibald 

Case 2: piece by piece 

•  A is running 
•  A is interrupted by tick ISR 
•  Tick ISR calls YKTickHandler, which  

makes B “ready” and returns 
•  Tick ISR calls YKExitISR 
•  YKExitISR calls Scheduler 
•  Scheduler calls Dispatcher 
•  Dispatcher causes B to run 
•  Where is the context of A that will be  

loaded when A runs next? 
–  When are SP and PC updated (in TCB)? 

A’s 
TCB 

A’s 
Stack 

A’s 
Stack 
Frame 

? 
sp 

top of  
stack 

ISR-saved  
context 

YKExitISR 
frame 

Scheduler 
frame 

Dispatcher 
frame 

? 
pc 

425 F19 4:52 ©J Archibald 

Case 2: discussion 

•  Observation: a complete context was already saved on stack by ISR 
–  Has all register values of interrupted task code 
–  Saved IP is desired “return address” 

•  Makes sense to use it – what is required to do this? 
–  TCB must be updated with SP value for task  

•  At what precise point in the execution sequence? 
–  Should SP in some TCB be updated by every ISR? 

•  What about nested interrupts? 

•  Consider (likely) case of same task resuming after ISR 
–  Better to resume with scheduler/dispatcher or simply return? 

425 F19 4:53 ©J Archibald 

•  What happens when a task delays itself? 
–  Suppose A is running, and it calls YKDelayTask 
–  How will A’s context be saved? 
–  Consider: calls to other kernel functions can also cause task to block 

A’s 
TCB 

A’s 
Stack 

Saving context: case 3 

425 F19 4:54 ©J Archibald 

Case 3: piece by piece 

A’s 
TCB 

A’s 
Stack 

A’s 
Stack 
Frame 

? 
sp top of  

stack 

? 
pc 

•  A is running 



10 

425 F19 4:55 ©J Archibald 

Case 3: piece by piece 

A’s 
TCB 

A’s 
Stack 

A’s 
Stack 
Frame 

? 
sp 

top of  
stack 

YKDelayTask 
frame 

? 
pc 

•  A is running 
•  A calls YKDelayTask 

425 F19 4:56 ©J Archibald 

Case 3: piece by piece 

A’s 
TCB 

A’s 
Stack 

A’s 
Stack 
Frame 

? 
sp 

top of  
stack 

YKDelayTask 
frame 

Scheduler 
frame 

? 
pc 

•  A is running 
•  A calls YKDelayTask 
•  YKDelayTask calls Scheduler 

425 F19 4:57 ©J Archibald 

•  A is running 
•  A calls YKDelayTask 
•  YKDelayTask calls Scheduler 
•  Scheduler calls Dispatcher 

Case 3: piece by piece 

A’s 
TCB 

A’s 
Stack 

A’s 
Stack 
Frame 

? 
sp 

top of  
stack 

YKDelayTask 
frame 

Scheduler 
frame 

Dispatcher 
frame 

? 
pc 

425 F19 4:58 ©J Archibald 

Case 3: piece by piece 

•  A is running 
•  A calls YKDelayTask 
•  YKDelayTask calls Scheduler 
•  Scheduler calls Dispatcher 
•  Dispatcher causes another 

task to execute 
•  What context for A is saved? 

–  When in call sequence is it saved? 
–  What will saved SP and PC (in TCB) point to? 

A’s 
TCB 

A’s 
Stack 

A’s 
Stack 
Frame 

? 
sp 

top of  
stack 

YKDelayTask 
frame 

Scheduler 
frame 

Dispatcher 
frame 

? 
pc 

425 F19 4:59 ©J Archibald 

Case 3: possible solutions 
•  Would any of these approaches work? 

–  At beginning of YKDelayTask, call assembly function to save context 

–  At beginning of YKDelayTask, use inline assembly to save context 

–  Write YKDelayTask entirely in assembly; save context at start 

–  Make YKDelayTask an assembly wrapper function that saves context, calls 
C code 

–  In Dispatcher, use back trail of saved bp values: determine sp and pc for 
return to YKDelayTask, save those values and corresponding context  

–  Save context in Dispatcher: use return address to Scheduler, which will 
return to YKDelayTask, then task code 

425 F19 4:60 ©J Archibald 

Solutions: discussion 
•  Things to consider: 

–  If I call a function or use inline assembly, won’t that change some registers?  

–  I may obtain return address and stack pointer for some previous point of execution, but 
how would I get the corresponding register values?  

–  Best to avoid assembly code whenever possible 

–  Many kernel functions that can cause a task to block will not always do so 

•  Example: task calling YKSemPend may be blocked, or call may return immediately  

–  Dangerous to reach into previous stack frames for values 

–  For every frame allocated on stack (regular stack frame created by function, or frame 
that stores context), there must be corresponding code somewhere to remove it 

–  If execution resumes in Scheduler (after call to Dispatcher), what will that code do? 



11 

425 F19 4:61 ©J Archibald 

Thinking it through 

•  Scenario:  
–  Dispatcher conditionally saves context, uses return address 

to the Scheduler   
–  What happens when task A resumes? 

A’s 
Stack 
Frame 

top of  
stack 

YKDelayTask 
frame 

Scheduler 
frame 

Dispatcher 
frame 

void YKDelayTask(int ticks) 
{ 
    if (ticks <= 0) return; 
    YKEnterMutex(); 
    // move TCB to blocked list 
    YKScheduler(CTXNOTSAVED); 
    YKExitMutex(); 
 } 

void YKScheduler(int i) 
{ 
    if (YKRdyList != YKCurrTask) 
    { 
        YKCtxSwCount++; 
        YKDispatcher(i); 
    } 
}  

Sample YAK code 
425 F19 4:62 ©J Archibald 

Thinking it through 

•  How will all register values be saved in this scenario?  
–  Suppose critical value is in register in YKDelayTask 
–  Register used is either caller-save or callee-save 

A’s 
Stack 
Frame 

top of  
stack 

YKDelayTask 
frame 

Scheduler 
frame 

Dispatcher 
frame 

void YKDelayTask(int ticks) 
{ 
  ... 

 // register is saved 
 YKScheduler(CTXNOTSAVED); 
 // register is restored 
 ... 

 } 

void YKScheduler(int i) 
{ 

 ... 
 // register is modified 
 ... 
 YKDispatcher(i); 

 
}  

Sample YAK code 

Case 1: caller-save 

Execution starts here 
when task runs again 

425 F19 4:63 ©J Archibald 

Thinking it through 

•  How will all register values be saved in this scenario?  
–  Suppose critical value is in register in YKDelayTask 
–  Register used is either caller-save or callee-save 

A’s 
Stack 
Frame 

top of  
stack 

YKDelayTask 
frame 

Scheduler 
frame 

Dispatcher 
frame 

void YKDelayTask(int ticks) 
{ 
 
  ... 

 YKScheduler(CTXNOTSAVED); 
 ... 

 
 } 

void YKScheduler(int i) 
{ 

 ... 
 // register is saved   
 // register is modified 
 YKDispatcher(i); 
 // register is restored  

}  
Sample YAK code 

Case 2: callee-save 

Execution starts here 
when task runs again 

425 F19 4:64 ©J Archibald 

Saving context: overall options 
•  Option 1: save context in same way in all cases 

–  Scheduler calls single Dispatcher, fires up task in same way regardless  
of what caused it to stop execution 

–  Keeps both Scheduler and Dispatcher fairly simple 

•  Option 2: treat each case separately 
–  Cases: (1) first time running, (2) interrupted, (3) stopped by self  

–  Scheduler must detect (using info in TCB) and call correct Dispatcher 

–  Scheduler more complicated, multiple versions of Dispatcher required 

•  Extremely important issue – think this through carefully! 
–  Remember: SP, PC and registers must be consistent snapshot in time  

425 F19 4:65 ©J Archibald 

Kernel questions 

•  Some we’ve addressed: 
–  How are tasks represented? What data structures are used? 
–  When and where are task contexts saved?   

•  Where in execution sequence? What information exists at that point? 
•  What code removes every stack frame that is added? 

–  How does the Dispatcher transfer control to a task? 
–  How are tasks run for the first time? 
–  How does the task delay mechanism work? 

•  Some we’ve not yet addressed: 
–  How do you allocate TCBs? 
–  How big do stacks need to be? 
–  How do you organize your files? 

425 F19 4:66 ©J Archibald 

How are TCBs allocated? 

•  Each call to YKNewTask needs a new TCB 
•  We don’t have dynamic memory allocation (e.g., malloc) 

–  Where will each TCB struct come from? 

•  Recommended solution: write your own allocation routines 
–  Declare array of TCB structs, allocate them as needed 
–  Set size of array with #define in .h kernel file, edited by user 

•  Example: #define MAXTASKS 6 

–  They are never recycled: there is no YKDeleteTask function 



12 

425 F19 4:67 ©J Archibald 

How big must stacks be? 

•  When are stack frames added? 
–  When any function is called 
–  When an ISR runs 

•  What is maximum number of frames that can exist? 
–  What is maximum nesting depth of function calls? 
–  What is maximum interrupt nesting level? 

•  What is size of each frame? 
–  For functions: local vars, saved registers, arguments to other functions  
–  For ISRs: size of context that will be saved 

•  Good news: stack size is responsibility of application code, not kernel 
–  Sole exception: idle task  

425 F19 4:68 ©J Archibald 

Suggested file organization 

myisr.s 

yaku.h 

myinth.c 

clib.s 

labxapp.c 

yakk.h 

yakc.c 

yaks.s 

clib.h 

myinth.s labxapp.s yakc.s 

executable 

ISRs 

Interrupt 
handlers 

Kernel code, 
separate C 

and asm files 

Kernel 
include file 

with user values 
Kernel 

include file 

Important: use consistent organization in your own code 

Key: 
File you write 

Provided file 

Generated file 

425 F19 4:69 ©J Archibald 

Recommendations 
•  Think things through from multiple perspectives 

–  What happens to each stack frame? 
–  What happens to each TCB struct? 
–  What happens to each list? 
–  What happens to the interrupt flag? 

•  Create routines to help you debug your code 
–  I wrote a dumplists() function, can be called anywhere 
–  Sample output:       (key: [priority,state,delay]) 

YKCurrTask: [2] 
Rdy: [2,1,0] [4,1,0] [100,1,0] 
Susp: [3,4,2] [13,4,8] 

–  Easy to confirm state transitions in context switches, etc. 
–  Concise output extremely useful! 

425 F19 4:70 ©J Archibald 

Kernel variables: 
YKCtxSwCount  Number of context switches 
YKIdleCount  Incremented in idle task 

Kernel functions: 
YKInitialize  Initializes all required kernel data structures 
YKRun  Starts actual execution of user code (tasks) 
YKEnterMutex  Disables interrupts 
YKExitMutex  Enables interrupts 
YKEnterISR  Called on entry to ISR 
YKExitISR  Called on exit from ISR 
YKScheduler  Determines the highest priority ready task 
YKDispatcher  Begins or resumes execution of the next task 
YKNewTask  Creates a new task 
YKDelayTask  Delays a task for specified number of clock ticks 
YKTickHandler  The kernel's timer tick interrupt handler 
YKIdleTask  Lowest priority task, never blocks 

Lab 4: implementation questions? 


