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Chapters 2 & 3 

•  A review of hardware essentials  
–  Most of you have seen this material in other classes 
–  Still worth a careful read: may give you new insight  

•  We’ll touch briefly on a few topics of interest 
 

425 F19 2:2 ©J Archibald 

Chapters 2, 3: bits and pieces 

•  Consider variety of memory technologies 
 

Technology          Read Speed       Write Speed           Write Times 
ROM (masked)  Fast  N/A  0 
PROM  Fast  N/A  1 
EPROM  Fast  N/A  Many 
EEROM  Slow  Slow  Millions 
Flash  Fast  Slow  ~100,000+ 
RAM  Very fast  Very fast  Infinite 
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Chapters 2, 3: bits and pieces 
•  Self-test on selected topics: 

–  What are tri-state devices, and what are challenges if they are controlled by 
software? (pp. 23-26) 

–  What are the characteristics of flash memory that make it so popular, and 
what are its limitations? (pp. 36-37) 

–  Is there a difference between a microprocessor and a microcontroller? (p. 
46) 

–  How does memory-mapped I/O differ from having a separate I/O address 
space? (p. 51) 

–  What are wait states, what problem do they address, and how are they 
inserted? (pp. 55-56) 
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Chapters 2, 3: bits and pieces 
•  Other topics of interest: 

–  DMA: direct memory access 
•  Circuitry that can move data between I/O devices and memory without  

software assistance; reduces CPU overhead for I/O. 

–  Interrupts 
•  Hardware signal telling the processor that a particular event has occurred. 
•  Processor can ignore: under software control. 

–  Watchdog timer 
•  Resets processor when it expires; shouldn’t happen in normal operation. 
•  Software resets counter regularly, called petting the watchdog. 
•  Important: why reset processor and not assert interrupt? 
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“A last word about hardware” 

•  Every copy of the hardware costs money. 
–  In high volume, eliminating a 25 cent part can be a big deal.  

•  Every part  
–  takes up space, and space is at a premium. 
–  requires power, adding to battery load or increasing size and cost of power 

supply. 
–  generates heat; eventually you need a fan, or larger fan. 

•  In general, faster components cost more, use more power, and generate 
more heat. 
–  Hence, clever software is often a better way to make a product fast. 
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Using C 
Real-time programmers must be masters of their compilers. That is, at all times 
you must know what assembly language code will be output for a given high-order 
language statement. 
     Phillip A. Laplante 
 

The limits of my language mean the limits of my world.     
                Ludwig Wittgenstein  

 
 

•  C is widely used in embedded systems, but can be tricky. 
–  Important to have thorough understanding of the constructs you use. 
–  Lots of C in ECEn 330; let’s review pointers. 

•  You will use them in your RTOS. 
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Pointer basics 

What is type of each expression?  
What value or location is referred to? 

•  a 
•  &a 
•  b 
•  &b 
•  *b 
•  *a 
•  *(&a) 

0x100 
0x102 
0x104 
0x106 
0x108 
0x10a 
0x10c 
0x10e 

Address 

…
 

a 

16-bit words 

b 

 /* source code */ 

 int a;   

 int *b; 
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Pointers as parameters 

int x; 

void f (int a) 
{ 
   a = 2; 
} 
 
main() 
{ 
   x = 4; 
   f(x); 
   printf(“%d”, x); 
} 

int x; 

void f (int *a) 
{ 
   *a = 2; 
} 
 
main() 
{ 
   x = 4; 
   f(&x); 
   printf(“%d”, x); 
} 

Output is 4 Output is 2 What is output? 
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Pointers as parameters 

int x; 

void f (int a) 
{ 
   a = 2; 
} 
 
main() 
{ 
   x = 4; 
   f(x); 
   printf(“%d”, x); 
} 

int x; 

void f (int *a) 
{ 
   *a = 2; 
} 
 
main() 
{ 
   x = 4; 
   f(&x); 
   printf(“%d”, x); 
} 

Output is 4 Output is 2 

copy of x 
ret addr 
old bp 

... 
... 

bp 

copy of &x 
ret addr 
old bp 

... 
... 

bp 
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Pointers and parameters 

•  Important: C parameter passing is always by value! 
–  Copy of argument placed in arg build area on stack 

•  True of C basic data types, including struct (copy of entire struct placed on stack) 
•  Exception: If arg is array: copy of address of array is pushed onto stack 

–  Within function, parameter is same as a local variable 
•  Can be modified, but write will not change original argument 

–  Can simulate “pass by reference” by using pointer to variable 
•  Still “by value”, but value used is that of pointer 
•  Consider example on next slide... 
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Pass by value or reference? 
int x = 4; 
int y = 6;  
 
void f(int *a) { 
    *a = 2; 
    a = &y; 
 } 
 
 main() { 
    int *b; 
    b = &x; 
    f(b); 
    /* is b changed? */ 
    …  
 } 

copy of b 
ret addr 
old bp 

... 
... 

bp 
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Using pointers 

int x; 

void f (int *a) 
{ 
   *a = 2; 
} 
 
main() 
{ 
   x = 4; 
   f(&x); 
   printf(“%d”, x); 
} 

; Generated by c86 (BYU-NASM) 5.1 (beta) from ptrex1.i 
 CPU  8086 
 ALIGN  2 
 jmp  main  ; Jump to program start 
 ALIGN  2 

f: 
 jmp  L_ptrex1_1 

L_ptrex1_2: 
 mov  si, word [bp+4] 
 mov  word [si], 2 
 mov  sp, bp 
 pop  bp 
 ret 

L_ptrex1_1: 
 push  bp 
 mov  bp, sp 
 jmp  L_ptrex1_2 

L_ptrex1_4: 
 db  "%d",0xA,0 
 ALIGN  2 

main: 
 jmp  L_ptrex1_5 

L_ptrex1_6: 
 mov  word [x], 4 
 mov  ax, x 
 push  ax 
 call  f 
 add  sp, 2 
 push  word [x] 
 mov  ax, L_ptrex1_4 
 push  ax 
 call  printf 
 add  sp, 4 
 mov  sp, bp 
 pop  bp 
 ret 

L_ptrex1_5: 
 push  bp 
 mov  bp, sp 
 jmp  L_ptrex1_6 
 ALIGN  2 

x: 
 times  2 db 0 

passing  
address 

dereferencing 
pointer 
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Observations 

•  Accessing data via pointer can be quite efficient in x86. 
–  In some cases, requires no extra instructions.   
–  However, instructions that access memory are more complex, 

likely to require more cycles. (This is not reflected in our tools.)  

•  Thinking about what happens at assembly level can help 
you keep things straight in your C code. 
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What do these programs do? 

int x; 

int y[4] = {2,3,5,7}; 

main() 
{ 
   x = y[0]; 

   x++; 
} 

int *x; 

int y[4] = {2,3,5,7}; 

main() 
{ 
   x = y+2; 

   *(x++) = (*x)++; 
} 

Final values: 
  x = 3; 
  y[] = 2,3,5,7; 

Final values: 
  *x = 7; 
  y[] = 2,3,5,7; 

•  Different compilers, different machines might 
give different results 

•  gcc on mac gives warning: “unsequenced 
modification and access to ‘x’ ” 
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Pointers and structs 

struct point 
{ 
   int x; 
   int y; 
}; 
struct point P1, *P2; 
main() 
{ 
   P1.x = 5; 
   P1.y = -7; 
   P2 = (struct point *)       

 malloc(sizeof(struct point)); 
   P2->x = -31; 
   P2->y = 17; 
} 

P1.x 

P1.y 

P2 

P2->x 

P2->y 

Heap 

. . . 

Global data 
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struct * example 

•  What happens when you compile this code and run it? 
 

struct point 
{ 
   int x; 
   int y; 
}; 
struct point p1,*p2; 
main() 
{ 
   p1.x = 5; 
   p1.y = -7; 
   p2->x = -31; 
   p2->y = 17; 
  ... 

} 

On Linux systems: 
“Segmentation fault”! 

Why? 

On our system:  
? 
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C tips 
•  Write code that you understand! 
•  Add meaningful documentation 

•  Use consistent indentation 
–  Good editors will do this automatically 

•  Use .h files appropriately 
–  Nothing that allocates memory: no code or variable declarations! 

–  Only #defines, typedefs, function prototypes, etc. 
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Chapter 4: Interrupt basics 

•  Interrupt: a mechanism used to signal that an important 
event has occurred. 

•  Interrupts for humans: 
–  Doorbell, phone, oven timer, campus class bells, alarm, etc. 
–  Do we sometimes ignore these interrupts? 

•  Common scenario in computer systems: 
–  Processor is running job A 
–  An event occurs that processor should respond to 
–  Processor puts A “on hold”, handles event, resumes execution of A 
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What can cause an interrupt? 

•  Anything that system designer wires to interrupt pins 
•  Example events: 

–  UART receives new char 
–  Disk controller has completed read of data block 
–  Sensor reports change in data value 
–  User presses a button or key 
–  Timer expires 
–  Power failure 
–  Fault or error detected in system, either  

•  External to CPU (hardware specific) 
•  Internal to CPU (exceptions) 
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The pros and cons 

•  Response to events can be fast, predictable 
–  Even when CPU is busy running something else 
–  Tasks can sleep (taking no CPU time) until they need to run 

•  It is easy to get interrupt code wrong 
–  Simpler alternative: polling  (testing for events at regular intervals)  
–  For simple embedded applications, polling is often good enough 
–  Harder to balance computation and responsiveness with polling 
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•  Essentially all processors support interrupts 
•  Our focus this semester:   

–  Systems with challenging response-time constraints 
–  Getting the right answer is important, but it must be delivered in time to use it 

   Definition I:  “A real-time system is one whose logical correctness is based 
on both the correctness of the outputs and their timeliness.” 
 

•  Are there computer systems in which timeliness is not important? 
–  Implication: timely response is critical 
–  There is more at stake than merely disappointing the user 

Interrupts: key to responsiveness 
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Real-time systems 

Definition II: “ A real-time system is a system that must satisfy explicit 
response-time characteristics or risk severe consequences, including 
failure.” 
 

•  If a deadline is not met, system failure may result 
–  Plane crashes, nuclear plant goes critical, etc. 

•  Many embedded systems can be classified as real-time based on this 
definition 
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Classification of real-time systems 

Key question: how critical are the deadlines? 
•  Hard real time: 

–  Missing a single deadline may cause system failure 

•  Firm real time: 
–  Occasional deadline can be missed without system failure 

•  Soft real time: 
–  Missing a deadline degrades performance 

in
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Our focus 

•  ECEn 425 objective is a hard real-time system 
–  Implication: deadlines must be met! 
–  Our interest: how are these systems designed and implemented? 

•  Motivation:  
–  These are the most challenging real-time systems 
–  If we can build hard real-time systems, we can certainly build 

systems with less strict requirements 
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Interrupts 

•  Observations: 
–  Interrupts are critical in systems with multiple tasks, hard deadlines 
–  The interrupt mechanism is a nifty collaboration between hardware 

and software; both play crucial roles 

•  Understanding the operational details is an essential part of 
computer system literacy 

•  Let’s start here:  
–  What does processor do when interrupt is asserted? 
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Interrupts: hardware side 

Simple model: 
•  Interrupt is asserted 

•  HW saves critical information 
about current task 

 
 

•  HW sets PC to start of 
corresponding code: interrupt 
service routine (ISR)  

Questions: 
•  Is delay possible from assertion to HW 

response? 
•  Should finish current instruction 
•  Interrupt may be masked or disabled 

•  What information, where saved? 
•  Return address, at a minimum 
•  On stack, in register, in fixed memory 

location, etc. 
•  Which is correct ISR, and how is its 

starting address determined? 
•  Usually found in table updated by SW 
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Interrupts: hardware issues 
•  Delay in responding 

–  Finish current instruction: how long can this take?  
–  How long might specific interrupt be masked, or all interrupts disabled? 

•  Saving state 
–  ISR is similar to hardware induced function call 
–  Similar actions: save return address, jump to new location 
–  Key difference: interrupt can occur at any point, so all registers must be saved 

•  Finding correct ISR to run 
–  Typically achieved by accessing interrupt vector table 

•  A table of ISR starting addresses stored in memory at fixed location 
•  Correct entry found by using interrupt number/level as index 
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Identifying source of interrupt 

•  A noise wakes you up at 2:00 AM; you don’t know what it was  
–  How do you find out?  

•  How does CPU know what interrupted it? 
–  Start with simplest hardware model: single interrupt line/pin 

CPU 

interrupt •  Single ISR entry point for all interrupts 
•  Software must run down checklist of possible events 
•  All interrupts disabled while ISR runs 
•  Single location sufficient to store return address 
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Multiple interrupt lines 

•  More complex hardware can be more efficient 
–  Useful to have multiple interrupt lines 
–  For interrupt i, hardware gets entry i from table of ISR addresses  

•  Software is responsible for initializing this interrupt vector table 
•  In best case, event-specific ISR can begin to run directly 

CPU 

interrupt 1 •  Operational details 
What if two lines are asserted at same time? 
What if second interrupt occurs while another 
    ISR is still running? 
What is required to handle nested interrupts? 

interrupt 2 
interrupt 3 

interrupt n 
... 
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Attaching devices 

•  Consider these alternatives: 

... CPU 
Device  Device  Device  INTA 

INTR 

CPU Device  Device  
INTA 1 INTA 2 

... 
INTA n 

INTR 1 
INTR 2 INTR n 

Device  

CPU 

Device  Device  Device  

Device  Device  Device  . . . 
INTA n 

INTR 1 

INTR n 

INTA 1 

... 

... 
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Our interrupt model 
•  Eight hardware interrupts (8 IRQ pins) 

–  Each is connected to a separate device 
–  Priority is handled by external chip (PIC) 
–  8086 has a single interrupt line from PIC 

•  Interrupts enabled/disabled by interrupt flag (IF) 
–  Special instructions: sti sets IF (enabled), cli clears IF (disabled) 

•  PIC has 3 8-bit registers (one bit per IRQ) to manage interrupts 
–  IMR (Interrupt Mask Register): selectively enables/disables 
–  IRR (Interrupt Request Register): shows asserted interrupts 
–  ISR (In-Service Register): shows interrupts currently being serviced 
–  In simulator: IMR, IRR, ISR displayed with other registers; you can change, 

monitor changes on, etc. 

8086 

IRQs 

PIC 
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8086 interrupts 
•  Actions taken by hardware (before ISR runs): 

–  Device asserts interrupt, PIC signals CPU 
–  CPU acknowledges interrupt response to PIC 
–  PIC gives CPU the IRQ# + 8 (e.g., IRQ 4 indicated by value of 12)  
–  CPU uses that number as index to interrupt vector table (stored at address 0:0) 

•  Each 4-byte entry is starting address of an ISR  (2-byte offset and 2-byte segment) 
–  CPU pushes flags, CS, and IP on stack (three 16-bit words) 
–  CPU clears IF, disabling interrupts 
–  CPU sets CS and IP to address of ISR (from table), fetches first ISR instruction 

•  Software responsibilities: 
–  ISR must save rest of interrupted state, re-enable interrupts, and call  

interrupt handler (C function that responds to interrupting event) 
–  After handler returns, ISR must restore interrupted context, notify PIC of end of 

ISR, and execute iret instruction (which restores IP, CS, and flags) 
–  Software must also ensure that interrupt vector table is initialized (at boot) 

8086 

IRQs 

PIC 
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425 tools 

•  How does our interrupt 
vector table get initialized?  

–  Loaded into memory as 
part of clib.s 

•  You must modify to direct to 
your ISRs: 

clib.s 

... 

dd    myresetISR  ; Reset ; Int 08h (IRQ 0)
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Interrupt handling illustrated 

Task Task 

ISR ISR 

Interrupt handler 

Save CPU context Restore CPU context 

Interrupt 
latency 

Interrupt 
response 

Interrupt 
recovery 

Time 

Interrupt asserted 

(C code) 

(assembly) (assembly) 

? 
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Interrupt nesting illustrated 

Task 

Time 

ISR 1 

ISR 2 

ISR 3 Interrupt 1 
Interrupt 2 

Interrupt 3 

Pr
io

ri
ty

 

(Combined ISR+handler) 
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Interrupt nesting 

•  Ensures timely response to the most important events 
–  Worst case response time for highest priority interrupt depends on longest 

code section with interrupts disabled 
–  Worst case response time for interrupts at other priority levels includes 

service time for higher priority interrupts 
•  What is required to make nesting work? 

–  Full context must be saved at each level, including return address 
–  Higher priority interrupts must be enabled, other interrupts disabled 

•  PIC handles details of masking interrupts with lower priority 
•  ISR must enable interrupts, since hardware disables them before ISR runs 

•  A bit trickier to write ISRs, handlers that can be interrupted 
–  The interrupt code you write must support nesting 
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8086 Interrupt Summary 
•  When 8086 detects an IRQ it 

–  suspends execution of current task, 
–  saves the return address (including segment) and flags, and  
–  jumps to an interrupt service routine. 

•  In turn, the ISR 
–  saves remaining context and does some housekeeping, 
–  does what needs to be done to respond to the interrupt (in our case by 

calling a C function), and then 
–  restores saved context and returns to the code that was interrupted. 
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Which registers to save? 

•  Why not just save registers that interrupt code will use? 
–  Complication: what if handler (C code) is modified? 

•  With changes, different registers might be used 

–  Future complication: may run a different task on return from ISR 
–  Safest strategy: save all registers 

•  Mistakes here can cause bizarre, irreproducible errors 
–  Your ISRs must save all registers except: {CS, IP, flags, SP, SS}  
–  Your ISRs need not save PIC registers: {IMR, ISR, IRR} 
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Lab 3 overview 
•  A lengthy task is busy computing and printing prime numbers 

–  This code is given to you 

•  System has three interrupts your code must respond to: 
1.  Reset must stop program execution, return to simulator prompt 

–  Caused by pressing control-R (ctr-R) on the keyboard 

2.  Tick prints the message “Tick n”, where n is the number of timer ticks 
processed so far 

–  Ticks generated automatically at regular intervals (default is 10,000 instructions) 
–  Can be generated manually by ctr-T on the keyboard 

3.  Keypress prints the message “Keypress (x) ignored” for any key other  
than ctr-R, ctr-T (or ctr-C, ctr-Z!) 

–  Key x is found in global variable called KeyBuffer, defined in clib.s 

425 F19 2:41 ©J Archibald 

Lab 3 assignment 

•  In assembly code, write an ISR for each of the 3 interrupts 
–  Edit clib.s to add labels for your ISRs (adding them to interrupt vector table) 

•  In C, write an interrupt handler for each of the 3 interrupts 

•  In general, each ISR will 
–  save state, 
–  call the appropriate handler (a C function), and then 
–  restore state and return. 

•  Remember general philosophy in this class:  
–  Do everything you can do in C 

–  Use assembly only when you must (because you can’t do it in C) 
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Lab 3 interrupt timing 

•  Single task code, three different ISRs 
–  Nesting must be supported 

Task 

Keypress ISR 

Tick ISR 

Reset ISR 
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Lab 3: nested interrupts 

•  How can we verify that interrupt nesting works? 
–  Interrupt handling is much faster than our reaction time 

•  Our solution – for this lab only: 
–  Special actions required for “delay” key (‘d’):  

•  Handler spins in loop, incrementing local variable 5000 times 
•  Length ensures that timer tick will occur during delay 

–  Your output must confirm that a nested interrupt occurred 
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Lab 3: sample output 
TICK 22 
 2467 2473 2477 2503 
TICK 23 
 2521 2531 2539 
TICK 24 
 2543 2549 2551 
 2557 2579 2591 2593 2609 2617 2621 2633 2647 
KEYPRESS (8) IGNORED 
 2657 
 2659 2663 2671 2677 2683 2687 2689 
KEYPRESS (k) IGNORED 
 2693 2699 2707 
TICK 25 
 2711 2713 2719 2729 2731 2741 2749 2753 
KEYPRESS (j) IGNORED 
 2767 2777 
 2789 2791 2797 2801 2803 2809 2819 2833 2837 2843 
 2851 2857 2861 
TICK 26 
 2879 2887 2897 2903 2909 2917 2927 
 2939 2953 2957  
DELAY KEY PRESSED 
TICK 27 
TICK 28 
DELAY COMPLETE 
 2963 2969 2971 
TICK 29 

normal tick 

normal keypress 

nested interrupts 

task output 
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Lab 3 output 

•  Make your output matches the format on previous slide 
–  Background task prints prime numbers as they are discovered 
–  Numbers are interleaved with output from your interrupt handlers 
–  For clarity, put your messages on line by themselves 

•  After each interrupt, control passes back to prime number generator 
•  Requirements (TA will stress-test!):  

–  Code (task + ISRs) must not crash or hang, regardless of frequency of 
keypresses 

–  Code must work with a tick interrupt every 500 instructions 
•  Much faster than normal frequency (tick per 10,000 instructions)! 
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Labs 4-8 

•  All future labs will use ISRs: understand them! 
–  You will make slight modifications to your Lab 3 ISRs 
–  In an RTOS, ISRs need to do a few more things 

•  Lab 3 is a good starting point, but the complexity ramps up quickly… 
–  Challenges 

•  Design and encoding of multiple tasks 
•  Avoiding shared data problems 
•  Executing multiple tasks – switching contexts 
•  Coding functions to support communication, synchronization between 

tasks, ISRs 

425 F19 2:47 ©J Archibald 

Section 4.2: Common questions 

•  How is the ISR found for a given interrupt? 
•  Can the CPU be interrupted in the middle of an instruction? 
•  If two or more interrupts happen at the same time, what does the 

hardware do? 
•  Can interrupts be nested? 
•  What happens if an interrupt is asserted and interrupts are disabled or 

that particular interrupt is masked? 
•  What happens if you forget to re-enable interrupts?  

•  What if you enable interrupts when already enabled, or disable when 
already disabled? 
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•  What is state of IF and IMR when simulator starts up?  
–  Does this reflect real hardware? 

•  Can ISRs be written in C? 
•  How, where does an ISR save context? 
•  Must all registers be saved? 
•  How are contexts saved with nested ISRs?  How will they be restored? 
•  What happens if you forget to save a particular register? 
•  How can you disable and enable interrupts in C code? 
•  What’s the purpose of a nonmaskable interrupt? 

Common questions cont. 


