
1

425 F19 1:1 ©J Archibald

ECEn 425
Real-time and embedded systems

Dr. James Archibald
450P EB

425 F19 1:2 ©J Archibald

Insight into how we learn

•  From Carl Wieman…

•  From Derek Muller…

•  From Robert Bjork…

What does this mean for us here today?

425 F19 1:3 ©J Archibald

!"#$’% $"&% '(#%% #((
#)*+$,-

•  ./ &/$0*1+'$&*/ $* $"2 12%&3/ *4
25)21121 %6%$25%7 8&$" 259"#%&%
*/ %*4$8#02:-

•  ;*/%&120 9*9+(#0 $2'"/*(*36 #/1
%*'&2$#(&59#'$<-
–  =5#0$ 9"*/2%-

–  >?= 02'2&@20%-

–  A&3&$#('#520#%-

–  &?*1%-

–  .+$*5#$&*/ &/ @2"&'(2%-

•  B*8 &% $"2 4+/'$&*/#(&$6 &/
$"2%2 '**(3&C5*%-

425 F19 1:4 ©J Archibald

What’s this class all about?

•  An introduction to the design of embedded systems, with
emphasis on software

•  How are these changing our world?
–  Smart phones and apps
–  Autonomous vehicles
–  Facial recognition systems
–  The Internet of Things

•  What role does software play in these devices and systems?

425 F19 1:5 ©J Archibald

Digital functionality

•  Embedded platforms seldom employ fully custom devices;
–  Instead, commodity parts are integrated in a platform-specific way

•  System behavior is determined by standard
microprocessors customized through software

•  This brings significant flexibility: to change the function,
simply change the program

•  But what is the cost of software?

425 F19 1:6 ©J Archibald

Your ECEn 330 experience

•  What did you learn about embedded software from 330?

•  How does process of creating software compare with
process of creating hardware?

•  How does programming compare with traditional
engineering tasks, such as constructing a bridge?

2

425 F19 1:7 ©J Archibald

Software: the downside

•  Code size is a problem, memory demands continue to increase
–  Old voice-only cell phones had ~8 MB ROM, 4 MB RAM
–  RAM in iPhone 1: 128MB, iPhone 4: 512MB, iPhone 5/6: 1GB
–  Total code in smart phone: >20 M lines
–  Total code in avg. high end automobile: >100 M lines
–  But productivity just 100-200 lines of code per programmer per month!

•  How can projects ever finish?!

•  Code complexity is a problem
–  Even small embedded systems can require major development effort
–  Tools used to manage software development have “productivity factors” for

real-time embedded systems that are much lower than standard systems

425 F19 1:8 ©J Archibald

Software: the downside

•  Consequence: hardware costs dwarfed by software costs
–  20:1, 50:1 not uncommon in embedded systems (SW:HW)

•  Testing and debugging are responsible for ~50% of the cost of
developing conventional software

–  In real-time systems, they are responsible for ~70%
–  Conventional debugging aids don’t “see” many of the bugs
–  Generally impossible to exercise all timing possibilities

•  Factors contributing to software complexity
–  Typical embedded code uses concurrent constructs
–  Target systems can differ greatly from each other
–  Devices often networked (creating security vulnerabilities)

Was your 330 code
concurrent?

425 F19 1:9 ©J Archibald

Software dominates

•  Strong demand for engineers developing embedded systems.
•  Most common title is software engineer

–  Deceptive: means programmer that uses scope, logic analyzer to debug!

•  Most common background:
–  CpE or EE
–  Why not CS?

•  SW drives HW directly
•  Detailed knowledge of HW required by SW developer
•  Often no safety net: some SW bugs can fry hardware

425 F19 1:10 ©J Archibald

Embedded software

•  Embedded systems are important part of computer
engineering at BYU

•  We have other classes that emphasize the hardware.
•  Emphasis in this class is the software

–  What is unusual about software for embedded systems?
–  What are challenges involved in designing, coding, and debugging

this type of software?

•  You’ll be able to answer these questions in detail by end of
semester!

425 F19 1:11 ©J Archibald

Class emphasis

•  Main focus is the lab sequence
–  You will create a simple but complete RTOS

•  RTOS = real-time operating system
•  Something similar used in many embedded systems
•  Development done in user-friendly simulation environment

–  Goals:
•  Understand software structures, algorithms required for preemptive

multi-tasking
•  Understand relationship of hardware interrupts and software interrupt

handlers
•  Understand how to construct software to respond to important events

in a timely fashion – critical in real-time systems
425 F19 1:12 ©J Archibald

My goals

•  I want students in this class to
–  become interested in the challenges of designing reliable real-time

and/or embedded systems
–  know enough about embedded software development to do well in

job interviews in that discipline
–  have a thorough knowledge of the functionality and limitations of

real-time operating systems
–  gain experience creating application code with real-time

constraints
–  be better computer engineers by having greater understanding of

the underlying system and acquiring more design, programming,
and debugging experience

3

425 F19 1:13 ©J Archibald

Labs
•  Initial labs done by each individual; RTOS labs done in

groups of two.
–  After lab 4, working alone requires special permission.
–  Significant benefits of having someone to argue with!

•  Not color-by-number projects:
–  The API is specified (system functions you code up)
–  You design the underlying data structures, use them in a consistent

way, and make it all work

•  Projects can be time consuming
–  Debugging concurrent code is challenging
–  Unlike virtually all previous coding you’ve done

work

425 F19 1:14 ©J Archibald

Why challenging?
•  They are not artificially complicated; the complexity is

inherent
•  The challenge is not creating lots of code

–  Size of my full kernel (including comments, blank lines)
•  C code (.c and .h): 955 lines total in 4 files
•  Assembly code (.s): 175 lines total in 2 files

•  The challenge is that your code is concurrent and must
work reliably; the details really matter

•  Warning:
–  Students report ~10x difference in time to do labs
–  Example: one group takes 2 hours, another takes 20

425 F19 1:15 ©J Archibald

Lab survival skills

•  Average time invested is not excessive for a 4 credit hour
ECEn class.

•  How to avoid getting on the high end of the distribution:
–  Work through all the details in the design phase
–  Plan from the outset how you will test your code
–  Include functions for testing in your design
–  Think every code change through carefully and test thoroughly

•  An extra hour spent in design can reduce debugging by 10x

8 hours of programming can save you 10 minutes with pencil and paper.
 Mike Goodrich

425 F19 1:16 ©J Archibald

Prerequisites

•  I’m assuming you’ve taken (and remember things from!):
–  CS 142
–  ECEn 220
–  ECEn 330

•  Critical material:
–  Knowledge of C programming language
–  Experience designing and debugging code with timing constraints
–  Understanding general operation of computer systems

425 F19 1:17 ©J Archibald

Lab policies
•  Keep up!

–  Labs build on each other; hard to get caught up if you get behind
–  Additional motivation: late lab penalty

•  25% per day first two weekdays
•  20% per weekday thereafter, to max of 90% off

–  Department policy: complete all labs to pass the class

•  Honor code expectation:
–  All code you use must be original (written by you + partner)

425 F19 1:18 ©J Archibald

Homework

•  Combination of two kinds of assignments
–  Excursions relating to C
–  Selected problems from text

•  Upload file (.txt or .pdf) to Learning Suite before 11:00pm
on due date
–  Please keep submissions neat and organized
–  Used fixed-point font for code listings, with proper indentation

•  Assignments can be accessed from the class web page

4

425 F19 1:19 ©J Archibald

Text, Attendance

•  An Embedded Software Primer, Simon
–  Very readable and technically sound
–  Written by experienced practitioner.

•  Class attendance is important
–  We will discuss many things not covered in the text:

•  Important issues related to labs – insight that will save you time!
•  Discussion of case studies, other supplemental material
•  Something interesting to start every class

425 F19 1:20 ©J Archibald

Grading

•  Overall grade determined by:

 30% from labs
 10% from homework
 30% from midterms (two, closed book, in class)
 30% from final (closed book, at scheduled time)

•  Midterms & solutions from Fall 2018 are online
•  Letter grades assigned subject to college/dept. guidelines

–  Class GPA will be ~3.1; median grade will be a B

425 F19 1:21 ©J Archibald

Miscellaneous

•  Read the syllabus and other online class material.
–  Syllabus is on Learning Suite, assignments on webpage
–  Note particularly the online schedule:

•  1st HW due on Learning Suite before 11:00 PM next Tuesday
•  1st lab due next Thursday: introduction to class tools (passed off to

TA; send email if no TA on duty, pass off later)

•  Questions?

Let’s go!

425 F19 1:22 ©J Archibald

Thought experiment

•  Your team is designing a rover to explore the surface of
Mars.

•  What special challenges must your team address?

•  What should the onboard control software do if something
goes wrong?

425 F19 1:23 ©J Archibald 425 F19 1:24 ©J Archibald

Nuggets from the preface

“Perversities of embedded systems”
–  Inconsistent terminology between companies

•  We’ll try hard to be consistent with book

–  Incredible diversity of embedded systems
•  From 8-bit microcontrollers with only internal memory to 32-

bit machines with gigabytes of external memory
•  Code size: from under 500 bytes to many megabytes

5

425 F19 1:25 ©J Archibald

Perversities, cont.

“Any rule followed by 85% of engineers as part of the accepted
gospel of standard practice has to be broken by the other 15%
just to get their systems to work.”

If this is true, what role should rules play?

425 F19 1:26 ©J Archibald

The C language

•  The lingua franca of embedded systems
–  C compiler available even for small microcontrollers
–  C is simple; resulting code and behavior predictable
–  C++, Java more complicated; less frequently supported

•  C essential in this class
–  Labs done in C and assembly
–  Text assumes reading knowledge (C!!)

•  C is reasonably portable, but far from perfect

C combines the power of assembly language with the
ease of use of assembly language.

 Mark Pearce

425 F19 1:27 ©J Archibald

“Hungarian” variable naming

•  Used in examples in book.
•  Variables have type-specific prefix:

by = unsigned char
i = integer
p_i = pointer to an integer
f = flag
a_ = array of ...

•  What benefits might this convention offer?
–  Consider similar approach in your own code.

425 F19 1:28 ©J Archibald

•  A microkernel or RTOS on accompanying CD
–  A small, streamlined OS for embedded systems
–  Functionality is similar to the RTOS you will code up
–  µC-OS not shareware but can be used for educational purposes
–  Has been used in our department for some senior projects

•  You may use the CD but are not required to do so
–  You are free to browse or study the source code

•  Many aspects of kernel are similar to ours, but there are also
substantive differences

–  For your convenience, contents have been copied onto the
department file-server. (See syllabus for details.)

µC-OS

425 F19 1:29 ©J Archibald

Embedded systems software

•  Must deal with a different set of issues than typical desktop
or enterprise software

•  It must...
–  handle situations that don’t arise in conventional software.
–  do several things at once.
–  respond in timely way to external events (button presses, sensor

readings, etc.).
–  cope with unusual conditions without human intervention.
–  meet strict processing deadlines.
–  never fail. (Is this really possible?)

Chapter 1

425 F19 1:30 ©J Archibald

“Telegraph”
example

•  Connects an old style printer
(designed to connect to the
serial port of a single machine)
to a network

•  Lots of complications; can’t
just copy incoming data to
other side

6

425 F19 1:31 ©J Archibald

•  Complications:
–  Network data is broken into packets which may arrive out-of-

order, or be lost entirely.
–  Multiple machines may try to use the printer at same time.
–  Printer status must be made available at all times to any

requesting computer regardless of what printer is doing.
–  Must work with different kinds of computers without any special

customization.
–  Must figure out type of attached printer at power up.
–  Must provide response to certain network packets within 200 ms.
–  Must handle timeouts – if computer crashes while printing, job

must be terminated, printer reset, and next job started.
–  Must work without human intervention.

425 F19 1:32 ©J Archibald

Other design issues
•  Throughput

–  Is it fast enough to keep up with data rates of transfers from
computer to printer?

•  Response time
–  Can it provide a timely response to important events?

•  Testability
–  Can it be shown to work under all conditions?

•  Debugability
–  How will errors in system be located and fixed?

•  Reliability
–  Will it work as well as customers expect?

425 F19 1:33 ©J Archibald

Other system design concerns

•  Power consumption
–  How do we design to maximize battery lifetime?
–  Software can power-down system when unused, but how to turn it on

again?

•  Minimizing system cost
–  Saving a few cents is a big deal (assuming high volume, low margins)
–  Minimize size of ROM and RAM; use small OS

•  Balancing conflicting needs
–  Substantial computation vs. fast response time
–  Response time is best when system isn’t otherwise busy

425 F19 1:34 ©J Archibald

Achieving acceptable response times
•  Designer creates separate “tasks” (C functions) with unique priorities
•  System runs highest priority ready task at each instant
•  Interrupt code can make another task ready; can run on ISR return
•  Eventually control should return to original (lower priority) task

Original Task

Interrupt
High Priority Task

Original Task Response Time ?

How does this impact the perceived responsiveness of the system?
What are design tradeoffs? (Did our 330 code work this way?)
What system support is needed to make this work?

ISR

425 F19 1:35 ©J Archibald

Choosing an embedded processor

•  Commodity parts: wide range of models are available
–  Differ in cost, performance, features

•  How can companies offer so many choices?
–  Enormous volume

•  In 2015, 15 billion ARM processors were sold
•  This is more processors than Intel has sold in its corporate history!

–  Proven technology
•  Mature processes, small dies with high yield and low cost

Microprocessor vs. microcontroller?

425 F19 1:36 ©J Archibald

Embedded systems

•  Often defined in terms of what they don’t have:
–  Keyboards

–  Screens

–  Disk drives

–  CD players, modems

–  but may have buttons or keypads
–  but may have LEDs, small LCD

–  but may use flash in similar way

–  but may have network connections

7

425 F19 1:37 ©J Archibald

Discussion

•  If there is no disk, how does a program get loaded at power-up?
•  Do embedded systems require both ROM and RAM?
•  How are embedded systems debugged without a keyboard and

monitor?
•  What are the “tasks” in our earlier example?

–  How are they represented?
–  Who decides how many and assigns the priorities?

•  Lots more on these issues!

425 F19 1:38 ©J Archibald

Schedule of Topics

•  That’s it for Chapter 1
–  Think about the implications of what we’ve talked about

•  Next up:
–  Background information on the x86 architecture and tools that

we’ll be using this semester

425 F19 1:39 ©J Archibald

The 8086 architecture

Whatever the artistic failures of the 80x86, keep in mind that there are more
instances of this architectural family than of any other in the world…
Nevertheless, its checkered ancestry has led to an architecture that is difficult
to explain and impossible to love.

 John Hennessy and David Patterson
 Computer Architecture: A Quantitative Approach

The x86 isn’t all that complex – it just doesn’t make a lot of sense.
 Mike Johnson
 Leader of x86 Design at AMD

425 F19 1:40 ©J Archibald

x86 history
•  1978: 16-bit 8086 announced, assembly-language compatible with 8-bit

8080. Many registers added – 8080 was accumulator machine.
•  1980: 8087 FP coprocessor announced, 60 FP instructions added that use

an extended stack architecture.
•  1982: 80286 extended address space to 24 bits; maintained compatibility

with 8086 real addressing.
•  1985: 80386 extended architecture to 32 bits, with 32-bit registers and

address space.
•  Many extensions and add-ons since.

425 F19 1:41 ©J Archibald

8086 registers

•  Both 8-bit and 16-bit
operations and registers

•  Registers have specific
purposes:
–  general purpose
–  pointer and index
–  segment
–  instruction pointer
–  flags

ax:
bx:
cx:
dx:

ah
bh
ch
dh

al
bl
cl
dl

sp
bp
si
di
cs
ds
ss
es
ip

8 bits
16 bits

8 bits
accumulator
base
count
data

stack pointer
base pointer
source index
dest. index

code segment
data segment
stack segment
extra segment

instr. pointer
status flags

{overflow,direction,interrupt enable,
 trap,sign,zero,auxiliary,parity,carry}

425 F19 1:42 ©J Archibald

Accessing memory

•  Memory addressing:

segment offset
logical address

physical address

20

16 16

<< 4

+

ax:
bx:
cx:
dx:

ah
bh
ch
dh

al
bl
cl
dl

sp
bp
si
di
cs
ds
ss
es
ip

8 bits
16 bits

8 bits
accumulator
base
count
data

stack pointer
base pointer
source index
dest. index

code segment
data segment
stack segment
extra segment

instr. pointer
status flags

{overflow,direction,interrupt enable,
 trap,sign,zero,auxiliary,parity,carry}

8

425 F19 1:43 ©J Archibald

8086 segments

•  Memory segments
–  can start on any 16-byte boundary
–  can be as small as 16 bytes, as large

as 64 KB
–  can overlap: a memory byte can be

referenced with multiple logical
addresses

ax:
bx:
cx:
dx:

ah
bh
ch
dh

al
bl
cl
dl

sp
bp
si
di
cs
ds
ss
es
ip

8 bits
16 bits

8 bits
accumulator
base
count
data

stack pointer
base pointer
source index
dest. index

code segment
data segment
stack segment
extra segment

instr. pointer
status flags

{overflow,direction,interrupt enable,
 trap,sign,zero,auxiliary,parity,carry}

425 F19 1:44 ©J Archibald

Using segment registers
•  Segment registers exist for

–  code
–  data
–  stack
–  “extra”

•  Memory accesses use current segment register contents –
usually implicit

–  Can specify another segment register with explicit override
–  Increased overhead to access data in another segment
–  Increased overhead to call function in another segment
–  Simplification for 425: all code and data (RTOS + application) should fit

in one 64 KB segment. All segment registers should be zero.

425 F19 1:45 ©J Archibald

Accessing operands

•  Operands can be in registers, immediate data, or memory
–  Assembly convention: first operand is both a source and destination
–  Examples:

add ax,bx ; 16-bit add, register operands, result in ax
add ah,cl ; 8-bit add, register operands
add bx, 3 ; 16-bit, register and immediate operands
add word [bx], 3 ; bx holds ptr, must specify size of op
add word [bx], word [si] ; illegal! one memory addr per instruction, max
mov ax, [si+2] ; reg + constant to specify address
mov ax, [constant+basereg+indexreg] ; most general form

425 F19 1:46 ©J Archibald

8086: a 16-bit CPU
•  Size of C data types with our compiler on 8086:

char 8 bits
enum 16 bits
short int 16 bits
int 16 bits
long 32 bits
pointers are a bit more complicated (Can you guess why?)

•  32-bit operations can require many instructions
–  Avoid whenever possible: avoid performance penalty

•  No floating-point operations

425 F19 1:47 ©J Archibald

8086: Little-endian

•  Least significant byte of value is stored first (at low address)
–  Example: assume 16-bit value 0x1122 is in register ax
–  CPU writes ax to int variable x at address 0x100 in memory

–  Biggest problem for us: multi-byte value appears backwards when
memory contents listed in order

22 100

11 101

a3 102

07 103

...
...

x: 11 22 ax:

Memory is
byte-addressable y:

425 F19 1:48 ©J Archibald

8086: Assembly notes

•  At most one memory address allowed per instruction
•  At most one immediate value allowed per instruction
•  Generally, operands must be of the same type
•  NASM (The Netwide Assembler)

–  Labels are case-sensitive
–  Instruction and register names are not case-sensitive

9

425 F19 1:49 ©J Archibald

8086: Flags

•  Only 9 of 16 bits are used
–  Referred to as of, df, if, tf, sf, zf, af, pf, cf

•  Set to reflect the result of various instructions and operations
–  Example: cf set if result generated a carry; adc (add with carry) used to do

32-bit adds with 16-bit operations
–  Example: of, sf, zf, cf set by arithmetic operations and comparisons;

values determine outcome of conditional jumps

•  Class webpages on instruction set give operational details

425 F19 1:50 ©J Archibald

8086: Multiplication and division

•  Require extra care to perform properly
•  Multiplying two 16-bit operands produces a 32-bit result, overwriting

two 16-bit registers
–  Operands must be in correct registers
–  Answer must be extracted from the right registers

•  Part of Lab 1: figure out how these instructions work, use them in
assembly code

–  Good way to proceed: write simple C programs, compile them (using class
tools), and study assembly output

–  Then write assembly code that does just what you want
–  Don’t be afraid to experiment!

425 F19 1:51 ©J Archibald

Assembly vs. C
•  Why program in assembly?

–  Performance: your code may be better than compiler’s code
•  This is a lot of work and seldom worth it
•  Our compiler is not great, but good enough for this class

–  Execute specific system instructions, or access specific registers
•  Examples: enable/disable interrupts, save/restore register context

•  Strongly recommended: minimize your assembly code
–  Use C for everything you can; use assembly only when necessary
–  Inline assembly is dangerous – “prohibited” in this class

425 F19 1:52 ©J Archibald

8086: Instruction encoding
•  “Saving the worst for last, the encoding

of instructions in the 8086 is complex,
with many different instruction
formats.” (Hennessy & Patterson, p. D-11)

•  Really doesn’t affect us, but you should
be grateful that you don’t have to write
the simulator or build a hardware
decoder!

425 F19 1:53 ©J Archibald

8086: Parting shot

The complexity of the x86 is not an impassable barrier… The biggest
weakness in the x86 instruction set is the lack of registers coupled with an
extremely painful addressing scheme.

 Mike Johnson
 Leader of x86 Design at AMD

425 F19 1:54 ©J Archibald

Lab1 assignment
•  Use the class tools (compiler, assembler, simulator) to compile and run a

simple program
•  Write the 8086 assembly code (fleshing out a skeletal function) to

compute the expression below in 20 instructions or less
 gvar+((a*(b+c))/(d-e))

•  Requires access to global variable (int gvar) and incoming parameters
(int a, char b, char c, int d, int e) on the stack

–  See lab info webpages for useful info about stack, assembly syntax

10

425 F19 1:55 ©J Archibald

Using the toolset

•  How to create and run a program
–  Edit file, say ex1.c
–  Run C preprocessor on file (cpp ex1.c ex1.i)
–  Compile (c86 -g ex1.i ex1.s)
–  Add clib.s code (cat clib.s ex1.s > ex1fin.s)
–  Assemble file (nasm ex1fin.s -o ex1.bin -l ex1.lst)
–  Run simulator (emu86) (new window pops up)

–  Load executable (l ex1.bin)
–  Run program in simulator (e)

•  You will quickly realize the benefits of using make!

425 F19 1:56 ©J Archibald

Simulator functionality
•  Has lots of features that can save you time!

425 F19 1:57 ©J Archibald

Stack essentials

•  Consider execution of this
C code:

void f1 (void)
{

 ...
}

void f2 (void)
{
 ...

 f1();
}

main ()
{

 ...
 f2();

}

global code

global data
static

stack

dynamic

(heap)

just before call to f2
 sp

low memory
address

high memory
address

Simple memory model

425 F19 1:58 ©J Archibald

Stack essentials

•  Consider execution of this
C code:

void f1 (void)
{

 ...
}

void f2 (void)
{
 ...

 f1();
}

main ()
{

 ...
 f2();

}

Simple memory model

static

stack

dynamic

(heap)

then f2 is called,
new stack frame created
 sp

frame for f2

global code

global data

425 F19 1:59 ©J Archibald

Stack essentials

•  Consider execution of this
C code:

void f1 (void)
{

 ...
}

void f2 (void)
{
 ...

 f1();
}

main ()
{

 ...
 f2();

}

Simple memory model

static

stack

dynamic

(heap) then f1 is called,
new frame created
 sp

frame for f2

frame for f1

global code

global data

425 F19 1:60 ©J Archibald

Stack essentials

•  Consider execution of this
C code:

void f1 (void)
{

 ...
}

void f2 (void)
{
 ...

 f1();
}

main ()
{

 ...
 f2();

}

Simple memory model

static

stack

dynamic

(heap)

f1 returns,
f1 frame “removed”
 sp

frame for f2

global code

global data

11

425 F19 1:61 ©J Archibald

Stack essentials

•  Consider execution of this
C code:

void f1 (void)
{

 ...
}

void f2 (void)
{
 ...

 f1();
}

main ()
{

 ...
 f2();

}

Simple memory model

static

stack

dynamic

(heap)

 sp
f2 returns,
f2 frame “removed”

Is stack exactly as it was before call to f2()?

global code

global data

425 F19 1:62 ©J Archibald

8086 Tools:
Example 1

/* ex1.c */
void printInt(int result);

void main(void)
{
 int x = 10;
 int y = 3;
 int result;

 result = x / y;
 printInt(result);
}

; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i
 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

425 F19 1:63 ©J Archibald

Example 1 notes

•  Stack details:
–  bp saved (why?), then set to value of sp, new value used throughout
–  bp used in most stack references (locals, args)
–  sp modified frequently: push, pop, call, ret

•  call pushes IP onto stack, sets IP to addr
•  ret pops word from stack, puts it in IP

–  sp at end will have original value

•  Instruction details:
–  cwd: convert word to doubleword; sign extends ax to fill dx, result in dx::ax.

(Use of ax, dx is implicit.)
–  idiv: dx::ax / cx, result in ax, remainder in dx. (Use of ax, dx is implicit.)

425 F19 1:64 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

?

st
ac

k
gr

ow
s

(d
ec

re
as

in
g

ad
dr

es
se

s)

sp
bp ?

16 bits

void main(void)
{
 int x = 10;
 int y = 3;
 int result;

 result = x / y;
 printInt(result);
}

425 F19 1:65 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

?

sp old bp

bp ?

void main(void)
{
 int x = 10;
 int y = 3;
 int result;

 result = x / y;
 printInt(result);
}

425 F19 1:66 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

?

sp
bp old bp

void main(void)
{
 int x = 10;
 int y = 3;
 int result;

 result = x / y;
 printInt(result);
}

12

425 F19 1:67 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

?

sp

bp old bp

void main(void)
{
 int x = 10;
 int y = 3;
 int result;

 result = x / y;
 printInt(result);
}

425 F19 1:68 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

sp

bp

?

old bp
10

void main(void)
{
 int x = 10;
 int y = 3;
 int result;

 result = x / y;
 printInt(result);
}

x

425 F19 1:69 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

sp

bp
x
y

?

old bp
10
3

void main(void)
{
 int x = 10;
 int y = 3;
 int result;

 result = x / y;
 printInt(result);
}

425 F19 1:70 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

sp

bp
x
y

result

?

old bp
10
3

x/y

void main(void)
{
 int x = 10;
 int y = 3;
 int result;

 result = x / y;
 printInt(result);
}

425 F19 1:71 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

sp

bp

?

old bp
10
3

x/y

x
y

result

copy of result

void main(void)
{
 int x = 10;
 int y = 3;
 int result;

 result = x / y;
 printInt(result);
}

425 F19 1:72 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

sp

bp right after
call instruction,
before printInt

executes ?

old bp
10
3

x/y

x
y

result

copy of result
return address

void main(void)
{
 int x = 10;
 int y = 3;
 int result;

 result = x / y;
 printInt(result);
}

13

425 F19 1:73 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

?

sp

bp

old bp
10
3

x/y

x
y

result

copy of result
return address

old bp

Stack frame
in printInt

local vars

saved regs

parameters

during printInt
execution

425 F19 1:74 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

sp

bp

printInt
frame

right after
ret in printInt

?

old bp
10
3

x/y

x
y

result

copy of result
return address

425 F19 1:75 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

sp

bp

?

old bp
10
3

x/y

x
y

result

copy of result
return address

printInt
frame

425 F19 1:76 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

sp
bp

?

old bp
10
3

x/y

x
y

result

copy of result
return address

printInt
frame

425 F19 1:77 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

sp
?

old bp
10
3

x/y

x
y

result

copy of result
return address

bp ?

printInt
frame

425 F19 1:78 ©J Archibald

Example 1
; Generated by c86 (BYU-NASM) 5.1 (beta) from ex1.i

 jmp main ; Jump to program start
 align 2

main:
 ; >>>>> Line: 5 > {
 jmp L_ex1_1

L_ex1_2:
 ; >>>>> Line: 10 > result = x / y;
 mov word [bp-2], 10
 mov word [bp-4], 3
 ; >>>>> Line: 10 > result = x / y;
 mov ax, word [bp-2]
 cwd
 mov cx, word [bp-4]
 idiv cx
 mov word [bp-6], ax
 ; >>>>> Line: 11 > printInt(result);
 push word [bp-6]
 call printInt
 add sp, 2
 mov sp, bp
 pop bp
 ret

L_ex1_1:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex1_2

sp

result

?

old bp
10
3

x/y

x
y

result

copy of result
return address

return address

bp ?

printInt
frame

14

425 F19 1:79 ©J Archibald

8086 Tools:
Example 2

/* ex2.c */

int printf();

void fun(int a, int b, int c)
{
 int i, j, k;
 i = 5;
 j = 7;
 k = 11;

 printf("%d %d %d %d %d %d”,
 a, b, c, i, j, k);
}

Note: printf is not available in clib.s.
Used for illustration only.

; Generated by c86 (BYU-NASM) 5.1 (beta) from ex2.i
 jmp main ; Jump to program start

L_ex2_1:
 db "%d %d %d %d %d %d”,0
 align 2

fun:
 ; >>>>> Line: 8 > {
 jmp L_ex2_2

L_ex2_3:
 ; >>>>> Line: 10 > i = 5;
 mov word [bp-2], 5
 ; >>>>> Line: 11 > j = 7;
 mov word [bp-4], 7
 ; >>>>> Line: 12 > k = 11;
 mov word [bp-6], 11
 ; >>>>> Line: 14 > printf("%d %d %d %d..
 push word [bp-6]
 push word [bp-4]
 push word [bp-2]
 push word [bp+8]
 push word [bp+6]
 push word [bp+4]
 mov ax, L_ex2_1
 push ax
 call printf
 add sp, 14
 mov sp, bp
 pop bp
 ret

L_ex2_2:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex2_3

425 F19 1:80 ©J Archibald

Example 2 ; Generated by c86 (BYU-NASM) 5.1 (beta) from ex2.i
 jmp main ; Jump to program start

L_ex2_1:
 db "%d %d %d %d %d %d”,0
 align 2

fun:
 ; >>>>> Line: 8 > {
 jmp L_ex2_2

L_ex2_3:
 ; >>>>> Line: 10 > i = 5;
 mov word [bp-2], 5
 ; >>>>> Line: 11 > j = 7;
 mov word [bp-4], 7
 ; >>>>> Line: 12 > k = 11;
 mov word [bp-6], 11
 ; >>>>> Line: 14 > printf("%d %d %d %d..
 push word [bp-6]
 push word [bp-4]
 push word [bp-2]
 push word [bp+8]
 push word [bp+6]
 push word [bp+4]
 mov ax, L_ex2_1
 push ax
 call printf
 add sp, 14
 mov sp, bp
 pop bp
 ret

L_ex2_2:
 push bp
 mov bp, sp
 sub sp, 6
 jmp L_ex2_3

sp

bp old bp
5
7
11

i
j
k

copy of k
copy of j
copy of i
copy of c
copy of b
copy of a

return address

a

b
c

string ptr

arg
build

local
vars

incoming
args

S
ta

ck
 fr

am
e

of
 fu

n
S

ta
ck

 fr
am

e

of
 c

al
le

r

...

425 F19 1:81 ©J Archibald

Example 2: discussion

•  Note parameter conventions:
–  incoming parameters at top of previous stack frame
–  outgoing parameters placed at top of current frame
–  C parameter order (left to right) matches stack order (top to bottom)

•  Questions
–  Why is sp decremented by 6 (as in ex1.s)?
–  Why is sp incremented by 14 just before resetting?
–  Can local variables be stored in registers?
–  How would function return a value?

•  By convention: byte in al, word in ax, dword in dx::ax

425 F19 1:82 ©J Archibald

Stack frames

•  What do they hold besides local variables and parameters?
–  Register values: some must be saved (and later restored) if they are used
–  Compilers assign registers to one of two categories:

•  caller-saved: called function can overwrite without saving and restoring
–  Examples: ax, cx, dx (based on C86 code examples)

•  callee-saved: caller can assume it will retain its value over call
–  Examples: bp

•  Note that push always writes 16-bit value
–  Full 16 bits used for byte-sized args, local vars on stack

•  Least significant byte for args, most significant byte for local vars (?!)
•  See “C Calling Convention” web page – under lab info

–  Ensures that all memory accesses to stack are aligned

425 F19 1:83 ©J Archibald

What’s important here?

•  Every C compiler has its own conventions on each CPU
•  If you want to write assembly code that works with C code, you must

observe compiler conventions
–  for incoming parameters
–  for outgoing parameters
–  for return values
–  for registers: callee- and caller-saved
–  for creating and removing stack frames

•  Lab 2 asks questions about program details:
–  addr for breakpoint, addr of global, addr of local, initial value of sp,

largest stack size, instruction encoding, etc.
•  Read and reread documentation on lab webpages!

