
1

425 Lab8:1 ©J Archibald

Lab 8: Time-critical application code

•  Inspiration for this lab: the ancient Game Boy
–  Real-time responsiveness was critical

–  Design balanced computation and quick event handling

–  Probably fun to design, develop, and test

•  Our focus for this lab: application software

–  Not the RTOS, graphical display, or game engine

425 Lab8:2 ©J Archibald

Conceptual model

LameBoyTM

Interrupts occur when new pieces appear.
Your code sends shift and rotate commands
for each piece.

This code does not need to manage display,
make pieces fall, handle line clears, etc.

input

output

You are given a
game-engine for Tetris

You create application code
that plays game

Interface is electronic,
rather than button-based

425 Lab8:3 ©J Archibald

Simptris

•  Simplified version of Tetris
–  Pieces consist of three blocks
–  Just two shapes: corners, straight pieces
–  Small board: 6 columns ✕ 16 rows

•  Score is simply total lines cleared
–  No bonus for clearing multiple lines

•  Simptris is special mode in simulator
–  Type “simptris” to prompt
–  Window appears with game display
–  State represented with ASCII characters

425 Lab8:4 ©J Archibald

Operational details

•  Inputs to your system:
–  An interrupt signals the appearance of each new piece

–  Global variables have details: location, piece type

•  Outputs from your system:
–  Movement commands: your code calls built-in rotate and shift functions

–  Constraint: next command cannot be sent until previous command completes

•  Pieces fall faster until code can’t keep up; high score wins
–  Limiting factor is fixed delay of movement commands

–  For full credit: clear at least 200 lines at default tick frequency

425 Lab8:5 ©J Archibald

The interface: inputs
•  The interrupts your system receives:

–  reset priority 0
–  tick priority 1
–  keypress priority 2
–  game over priority 3
–  new piece priority 4
–  received command priority 5
–  touchdown priority 6
–  line clear priority 7

•  Details are communicated via global variables
–  ID number, column, orientation of new piece
–  ID number of piece that touched down
–  Screen bitmaps of pieces that have touched down

Emu86 interrupts

Simptris interrupts

425 Lab8:6 ©J Archibald

The interface: outputs

•  The functions available (defined in simptris.s):
–  void Slide_Piece(int id, int direction); // 1=right, 0=left

–  void Rotate_Piece(int id, int direction); // 1=clockwise, 0=counterclockwise
–  void Seed_Simptris(long seed); // random number seed

–  void Start_Simptris(void);

•  Dealing with transmission delay:
–  Must wait for “command received” interrupt for previous command before calling

Slide_Piece() or Rotate_Piece(), otherwise behavior is undefined
–  Interrupt indicates “clear to send” rather than last command completed successfully

•  Can’t move piece into wall, for example
–  Recommendation: encapsulate communication details within a task

2

425 Lab8:7 ©J Archibald

The simulator
•  Type “simptris” at Emu86> prompt and game display appears

–  Normal text output from your code will appear in the program
output window as before

•  You get reset, keypress, and timer ticks as before
–  Simptris interrupts are added in simptris mode
–  You decide which interrupts your code will pay attention to

•  Write required ISRs and handlers

•  Modify interrupt vector table

–  For each interrupt you want to ignore: write a minimal ISR
•  Contents: save ax, send EOI command, restore ax, iret

•  Conceptually cleaner to mask these interrupts, but impractical in
simulator to modify IMR

425 Lab8:8 ©J Archibald

Lab requirements

•  Your application code must:
–  Use your YAK kernel
–  Accurately report CPU utilization and context switches every 20 ticks

–  Clear 200 lines at default tick frequency (with some seed)
–  Use just one random number seed per game

•  Not an exercise in AI unless you choose to make it one
–  Fairly straightforward placement algorithms are adequate if the overhead

of your RTOS code is low

425 Lab8:9 ©J Archibald

Suggested organization

•  Here’s a starting point to consider:
–  Create three tasks:

•  One makes placement decisions, determines sequence
of slide and rotate commands

•  One handles communication with Simptris
•  One handles statistics

–  Use two queues:
•  “Piece queue” buffers details about new pieces
•  “Move queue” buffers details about move commands

–  Use one semaphore:
•  Signal when next command can be sent

•  Choose your own design, but use good design principles

Placement
Task

“New piece” ISR

Communication
Task

“Rec Cmd” ISR

Piece queue

Move queue

Post semaphore

Stat
Task

slide,
rotate

interrupt

interrupt

425 Lab8:10 ©J Archibald

Placement algorithms

•  Very simple algorithm can clear 80+ lines (with correct seed):
–  Straight pieces on one side, corners on the other

•  Slightly more complicated algorithms work much better. Example:
–  Divide area into two halves, choose which side to play each piece on
–  Track state of each side separately: flat or not flat
–  If both sides flat, place pieces on nearest side unless imbalance too great
–  If one side not flat, place next corner piece there to make it flat

•  Much more complicated algorithms are possible
–  Can use features, interrupts in any way you wish

•  Key measures to think about to achieve maximum scores:
–  Worst case number of moves for any piece
–  Worst case latency from new piece to sending of first move command for piece

425 Lab8:11 ©J Archibald

The friendly competition

•  We will jointly pick a seed (on next to last day of class)
•  Everyone will run their code on that seed, report results in class on last day
•  Special recognition will be given for

–  Highest scores achieved with that seed
–  Lowest score with that seed (for code that cleared 200+ with a different seed)
–  Various noteworthy kernel “achievements” based on results reported in HW9

•  For reference:
–  Minimum required: 200 lines
–  Maximum observed with current simulator: >450 lines
–  My code has been beaten

