Lab 8: Time-critical application code

* Inspiration for this lab: the ancient Game Boy
— Real-time responsiveness was critical
— Design balanced computation and quick event handling

— Probably fun to design, develop, and test

* Our focus for this lab: application software

— Not the RTOS, graphical display, or game engine

Sul

Conceptual model

You are given a
game-engine for Tetris

You create application code
that plays game

Interrupts occur when new pieces appear.
input| Your code sends shift and rotate commands
for cach picce.

output
This code does not need to manage display,
make pieces fall, handle line clears, etc.

LameBoy™

Interface is electronic,
rather than button-based

SYul

425 Labg:1 425 Labg:2
Simptris Operational details
« Simplified version of Tetris * Inpufsitoiyotmrsystem:
Pieces consist of three blocks — An interrupt signals the appearance of each new piece
— Just two shapes: corners, straight pieces — Global variables have details: location, piece type
— Small board: 6 columns X 16 rows - program Outpet + Outputs from your system:
2 Scoreiisisimplytotalllines cleared — Movement commands: your code calls built-in rotate and shift functions
— No bonus for clearing multiple lines . . .
. . . L. — Constraint: next command cannot be sent until previous command completes
+ Simptris is special mode in simulator . K
e st) * Pieces fall faster until code can’t keep up; high score wins
— Window appears with game display — Limiting factor is fixed delay of movement commands
— State represented with ASCII characters — For full credit: clear at least 200 lines at default tick frequency
1% ©J Archibald 425 Lab8:3 1% ©J Archibald 425 Lab84
The interface: inputs The interface: outputs
* The interrupts your system receives: « The functions available (defined in simptris.s):
— reset priority 0 — void Slide_Piece(int id, int direction); // 1=right, 0=left
= it pr{or{ty I Emu86 interrupts — void Rotate_Piece(int id, int direction); // i
keypress prfor!ly 2 — void Seed_Simptris(long seed); /I random number seed
— gameover Ity 3 — void Start_Simptris(void);
— new piece priority 4 Deali AfG ission del
— received command priority 5 Simptris interrupts Ca N SEVILIIANSIHSSIOIue
= EhviTm priority 6 — Must wait for “command received” interrupt for previous command before calling
_ line clear ity 7 Slide_Piece() or Rotate_Piece(), otherwise behavior is undefined
- Details are communicated via global variables — Interrupt indicates “clear to send” rather than last command completed successfully
— ID number, column, orientation of new piece ° CrmoopE T, e
3 P | . e
— ID number of piece that touched down fon lopetailiithinlataske
= — Screen bitmaps of pieces that have touched down =
@ ©J Archibald 425 Lab85 @ ©J Archibald 425 Labg6

output window as before
* You get reset, keypress, and timer ticks as before

— Simptris interrupts are added in simptris mode

— You decide which interrupts your code will pay attention to
* Write required ISRs and handlers
* Modify interrupt vector table

— For each interrupt you want to ignore: write a minimal ISR
+ Contents: save ax, send EOI command, restore ax, iret

« Conceptually cleaner to mask these interrupts, but impractical in
simulator to modify IMR

BYu;

* One makes pl decisions, d i q
of slide and rotate commands

* One handles communication with Simptris
* One handles statistics Move queue
— Use two queues:

* “Piece queue” buffers details about new pieces.

* “Move queue” buffers details about move commands
— Use one semaphore: Post semaphore
* Signal when next command can be sent oot
+ Choose your own design, but use good design principles

+ Everyone will run their code on that seed, report results in class on last day

+ Special recognition will be given for
— Highest scores achieved with that seed
— Lowest score with that seed (for code that cleared 200+ with a different seed)

— Various thy kernel “achit based on results reported in HW9

+ For reference:
— Minimum required: 200 lines
— Maximum observed with current simulator: >450 lines
— My code has been beaten

— Use your YAK kernel
— Accurately report CPU utilization and context switches every 20 ticks
— Clear 200 lines at default tick frequency (with some seed)

— Use just one random number seed per game

» Not an exercise in Al unless you choose to make it one

— Fairly straightforward placement algorithms are adequate if the overhead
of your RTOS code is low

+ Slightly more complicated algorithms work much better. Example:
— Divide area into two halves, choose which side to play each piece on
— Track state of each side separately: flat or not flat
— If both sides flat, place pieces on nearest side unless imbalance too great
— If one side not flat, place next corner piece there to make it flat
+ Much more complicated algorithms are possible
— Can use features, interrupts in any way you wish
+ Key measures to think about to achieve maximum scores:
— Worst case number of moves for any piece
— Worst case latency from new piece to sending of first move command for piece

